Standard

Nil ideals of finite codimension in alternative Noetherian algebras. / Zhelyabin, V. N.; Panasenko, A. S.

In: Mathematical Notes, Vol. 101, No. 3-4, 01.03.2017, p. 460-466.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Zhelyabin VN, Panasenko AS. Nil ideals of finite codimension in alternative Noetherian algebras. Mathematical Notes. 2017 Mar 1;101(3-4):460-466. doi: 10.1134/S0001434617030075

Author

Zhelyabin, V. N. ; Panasenko, A. S. / Nil ideals of finite codimension in alternative Noetherian algebras. In: Mathematical Notes. 2017 ; Vol. 101, No. 3-4. pp. 460-466.

BibTeX

@article{8d134e280b564365abebc5ad6d477ed1,
title = "Nil ideals of finite codimension in alternative Noetherian algebras",
abstract = "Alternative (right) Noetherian algebras are considered. It is proved that, in these algebras, the nil ideals of finite codimension are nilpotent, which generalizes the corresponding Zhevlakov{\textquoteright}s result. As a corollary, we describe just infinite alternative nonassociative algebras (for the field characteristic distinct from 2).",
keywords = "alternative algebra, codimension, exceptional algebra, just infinite algebra, nil ideal, Noetheriaty",
author = "Zhelyabin, {V. N.} and Panasenko, {A. S.}",
year = "2017",
month = mar,
day = "1",
doi = "10.1134/S0001434617030075",
language = "English",
volume = "101",
pages = "460--466",
journal = "Mathematical Notes",
issn = "0001-4346",
publisher = "PLEIADES PUBLISHING INC",
number = "3-4",

}

RIS

TY - JOUR

T1 - Nil ideals of finite codimension in alternative Noetherian algebras

AU - Zhelyabin, V. N.

AU - Panasenko, A. S.

PY - 2017/3/1

Y1 - 2017/3/1

N2 - Alternative (right) Noetherian algebras are considered. It is proved that, in these algebras, the nil ideals of finite codimension are nilpotent, which generalizes the corresponding Zhevlakov’s result. As a corollary, we describe just infinite alternative nonassociative algebras (for the field characteristic distinct from 2).

AB - Alternative (right) Noetherian algebras are considered. It is proved that, in these algebras, the nil ideals of finite codimension are nilpotent, which generalizes the corresponding Zhevlakov’s result. As a corollary, we describe just infinite alternative nonassociative algebras (for the field characteristic distinct from 2).

KW - alternative algebra

KW - codimension

KW - exceptional algebra

KW - just infinite algebra

KW - nil ideal

KW - Noetheriaty

UR - http://www.scopus.com/inward/record.url?scp=85018808933&partnerID=8YFLogxK

U2 - 10.1134/S0001434617030075

DO - 10.1134/S0001434617030075

M3 - Article

AN - SCOPUS:85018808933

VL - 101

SP - 460

EP - 466

JO - Mathematical Notes

JF - Mathematical Notes

SN - 0001-4346

IS - 3-4

ER -

ID: 10064257