Standard

Modeling of Quantum Transport and Single-Electron Charging in GaAs/AlGaAs-Nanostructures. / Tkachenko, O. A.; Tkachenko, V. A.; Kvon, Z. D. et al.

Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications. ed. / AV Latyshev; AV Dvurechenskii; AL Aseev. Elsevier Science Inc., 2017. p. 131-155.

Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

Harvard

Tkachenko, OA, Tkachenko, VA, Kvon, ZD, Sheglov, DV & Aseev, AL 2017, Modeling of Quantum Transport and Single-Electron Charging in GaAs/AlGaAs-Nanostructures. in AV Latyshev, AV Dvurechenskii & AL Aseev (eds), Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications. Elsevier Science Inc., pp. 131-155. https://doi.org/10.1016/B978-0-12-810512-2.00006-8

APA

Tkachenko, O. A., Tkachenko, V. A., Kvon, Z. D., Sheglov, D. V., & Aseev, A. L. (2017). Modeling of Quantum Transport and Single-Electron Charging in GaAs/AlGaAs-Nanostructures. In AV. Latyshev, AV. Dvurechenskii, & AL. Aseev (Eds.), Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications (pp. 131-155). Elsevier Science Inc.. https://doi.org/10.1016/B978-0-12-810512-2.00006-8

Vancouver

Tkachenko OA, Tkachenko VA, Kvon ZD, Sheglov DV, Aseev AL. Modeling of Quantum Transport and Single-Electron Charging in GaAs/AlGaAs-Nanostructures. In Latyshev AV, Dvurechenskii AV, Aseev AL, editors, Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications. Elsevier Science Inc. 2017. p. 131-155 doi: 10.1016/B978-0-12-810512-2.00006-8

Author

Tkachenko, O. A. ; Tkachenko, V. A. ; Kvon, Z. D. et al. / Modeling of Quantum Transport and Single-Electron Charging in GaAs/AlGaAs-Nanostructures. Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications. editor / AV Latyshev ; AV Dvurechenskii ; AL Aseev. Elsevier Science Inc., 2017. pp. 131-155

BibTeX

@inbook{04200dc8019e4c5f8d014a08d58c45b8,
title = "Modeling of Quantum Transport and Single-Electron Charging in GaAs/AlGaAs-Nanostructures",
abstract = "Various semiconductor devices created by molecular beam epitaxy and lithography were numerically modeled: a quantum point contact in the voltage gate-induced two-dimensional electron gas, a versatile tunable two-terminal quantum dot, a small three-terminal quantum dot, and ring interferometers. Three-dimensional electrostatics calculations, taking into account the design of structures, combined with the theories of Coulomb blockade and quantum ballistic transport, allowed explanation of the observed resistance features of nanodevices. Accumulated experience was used to design semiconductor artificial graphene.",
keywords = "2DEG, 3D-electrostatic potentials, Coulomb blockade, Disorder, Graphene-like superlattice, Nanolithography, Quantum ballistics, Quantum dot, Quantum point contact, Ring interferometer, Simulation, Supercomputer calculation, CONDUCTANCE, RING INTERFEROMETER, DOT, POINT CONTACTS, OSCILLATIONS, SCATTERING",
author = "Tkachenko, {O. A.} and Tkachenko, {V. A.} and Kvon, {Z. D.} and Sheglov, {D. V.} and Aseev, {Alexander L.}",
note = "Publisher Copyright: {\textcopyright} 2017 Elsevier Inc. All rights reserved.",
year = "2017",
month = jan,
day = "1",
doi = "10.1016/B978-0-12-810512-2.00006-8",
language = "English",
isbn = "9780128105122",
pages = "131--155",
editor = "AV Latyshev and AV Dvurechenskii and AL Aseev",
booktitle = "Advances in Semiconductor Nanostructures",
publisher = "Elsevier Science Inc.",
address = "United States",

}

RIS

TY - CHAP

T1 - Modeling of Quantum Transport and Single-Electron Charging in GaAs/AlGaAs-Nanostructures

AU - Tkachenko, O. A.

AU - Tkachenko, V. A.

AU - Kvon, Z. D.

AU - Sheglov, D. V.

AU - Aseev, Alexander L.

N1 - Publisher Copyright: © 2017 Elsevier Inc. All rights reserved.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Various semiconductor devices created by molecular beam epitaxy and lithography were numerically modeled: a quantum point contact in the voltage gate-induced two-dimensional electron gas, a versatile tunable two-terminal quantum dot, a small three-terminal quantum dot, and ring interferometers. Three-dimensional electrostatics calculations, taking into account the design of structures, combined with the theories of Coulomb blockade and quantum ballistic transport, allowed explanation of the observed resistance features of nanodevices. Accumulated experience was used to design semiconductor artificial graphene.

AB - Various semiconductor devices created by molecular beam epitaxy and lithography were numerically modeled: a quantum point contact in the voltage gate-induced two-dimensional electron gas, a versatile tunable two-terminal quantum dot, a small three-terminal quantum dot, and ring interferometers. Three-dimensional electrostatics calculations, taking into account the design of structures, combined with the theories of Coulomb blockade and quantum ballistic transport, allowed explanation of the observed resistance features of nanodevices. Accumulated experience was used to design semiconductor artificial graphene.

KW - 2DEG

KW - 3D-electrostatic potentials

KW - Coulomb blockade

KW - Disorder

KW - Graphene-like superlattice

KW - Nanolithography

KW - Quantum ballistics

KW - Quantum dot

KW - Quantum point contact

KW - Ring interferometer

KW - Simulation

KW - Supercomputer calculation

KW - CONDUCTANCE

KW - RING INTERFEROMETER

KW - DOT

KW - POINT CONTACTS

KW - OSCILLATIONS

KW - SCATTERING

UR - http://www.scopus.com/inward/record.url?scp=85022193883&partnerID=8YFLogxK

U2 - 10.1016/B978-0-12-810512-2.00006-8

DO - 10.1016/B978-0-12-810512-2.00006-8

M3 - Chapter

SN - 9780128105122

SP - 131

EP - 155

BT - Advances in Semiconductor Nanostructures

A2 - Latyshev, AV

A2 - Dvurechenskii, AV

A2 - Aseev, AL

PB - Elsevier Science Inc.

ER -

ID: 21754167