Standard

Mirror symmetries of hyperbolic tetrahedral manifolds. / Derevnin, Dmitry Alexandrovich; Mednykh, Alexandr Dmitrievich.

In: Сибирские электронные математические известия, Vol. 15, 01.01.2018, p. 1850-1856.

Research output: Contribution to journalArticlepeer-review

Harvard

Derevnin, DA & Mednykh, AD 2018, 'Mirror symmetries of hyperbolic tetrahedral manifolds', Сибирские электронные математические известия, vol. 15, pp. 1850-1856. https://doi.org/10.33048/semi.2018.15.149

APA

Derevnin, D. A., & Mednykh, A. D. (2018). Mirror symmetries of hyperbolic tetrahedral manifolds. Сибирские электронные математические известия, 15, 1850-1856. https://doi.org/10.33048/semi.2018.15.149

Vancouver

Derevnin DA, Mednykh AD. Mirror symmetries of hyperbolic tetrahedral manifolds. Сибирские электронные математические известия. 2018 Jan 1;15:1850-1856. doi: 10.33048/semi.2018.15.149

Author

Derevnin, Dmitry Alexandrovich ; Mednykh, Alexandr Dmitrievich. / Mirror symmetries of hyperbolic tetrahedral manifolds. In: Сибирские электронные математические известия. 2018 ; Vol. 15. pp. 1850-1856.

BibTeX

@article{a214d3ca0e2443dfb88ad38b92c59d97,
title = "Mirror symmetries of hyperbolic tetrahedral manifolds",
abstract = "Let Λ be the group generated by reflections in faces of a Coxeter tetrahedron in the hyperbolic space 3: A tetrahedral manifold is a hyperbolic manifold M= 3=Γ uniformized by a torsion free subgroup Γ of the group Λ: By a mirror symmetry we mean an orientation reversing isometry of the manifold acting by reflection. The aim of the paper to investigate mirror symmetries of the tetrahedral manifolds.",
keywords = "Automorphism group, Hyperbolic manifolds, Hyperbolic space, Isometry group, hyperbolic manifolds, POLYHEDRA, automorphism group, isometry group, hyperbolic space",
author = "Derevnin, {Dmitry Alexandrovich} and Mednykh, {Alexandr Dmitrievich}",
year = "2018",
month = jan,
day = "1",
doi = "10.33048/semi.2018.15.149",
language = "English",
volume = "15",
pages = "1850--1856",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Mirror symmetries of hyperbolic tetrahedral manifolds

AU - Derevnin, Dmitry Alexandrovich

AU - Mednykh, Alexandr Dmitrievich

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Let Λ be the group generated by reflections in faces of a Coxeter tetrahedron in the hyperbolic space 3: A tetrahedral manifold is a hyperbolic manifold M= 3=Γ uniformized by a torsion free subgroup Γ of the group Λ: By a mirror symmetry we mean an orientation reversing isometry of the manifold acting by reflection. The aim of the paper to investigate mirror symmetries of the tetrahedral manifolds.

AB - Let Λ be the group generated by reflections in faces of a Coxeter tetrahedron in the hyperbolic space 3: A tetrahedral manifold is a hyperbolic manifold M= 3=Γ uniformized by a torsion free subgroup Γ of the group Λ: By a mirror symmetry we mean an orientation reversing isometry of the manifold acting by reflection. The aim of the paper to investigate mirror symmetries of the tetrahedral manifolds.

KW - Automorphism group

KW - Hyperbolic manifolds

KW - Hyperbolic space

KW - Isometry group

KW - hyperbolic manifolds

KW - POLYHEDRA

KW - automorphism group

KW - isometry group

KW - hyperbolic space

UR - http://www.scopus.com/inward/record.url?scp=85074909946&partnerID=8YFLogxK

U2 - 10.33048/semi.2018.15.149

DO - 10.33048/semi.2018.15.149

M3 - Article

AN - SCOPUS:85074909946

VL - 15

SP - 1850

EP - 1856

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 22336892