Standard

Measurement of ψ (3686) → Λ Λ ¯ η and ψ (3686) → Λ Λ ¯ π0 decays. / BESIII Collaboration.

In: Physical Review D, Vol. 106, No. 7, 072004, 01.10.2022.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

BESIII Collaboration. Measurement of ψ (3686) → Λ Λ ¯ η and ψ (3686) → Λ Λ ¯ π0 decays. Physical Review D. 2022 Oct 1;106(7):072004. doi: 10.1103/PhysRevD.106.072006

Author

BESIII Collaboration. / Measurement of ψ (3686) → Λ Λ ¯ η and ψ (3686) → Λ Λ ¯ π0 decays. In: Physical Review D. 2022 ; Vol. 106, No. 7.

BibTeX

@article{33cd7cdb1dd44f5f9ee6e2b50bf5500d,
title = "Measurement of ψ (3686) → Λ Λ ¯ η and ψ (3686) → Λ Λ ¯ π0 decays",
abstract = "Based on a sample of 448.1×106ψ(3686) events collected with the BESIII detector, a study of ψ(3686)→ΛΛ¯π0 and ψ(3686)→ΛΛ¯η is performed. Evidence of the isospin-violating decay ψ(3686)→ΛΛ¯π0 is found for the first time with a statistical significance of 3.7σ, the branching fraction B(ψ(3686)→ΛΛ¯π0) is measured to be (1.42±0.39±0.59)×10-6, and its corresponding upper limit is determined to be 2.47×10-6 at 90% confidence level. A partial wave analysis of ψ(3686)→ΛΛ¯η shows that the peak around Λη invariant mass threshold favors a Λ∗ resonance with mass and width in agreement with the Λ(1670). The branching fraction of the ψ(3686)→ΛΛ¯η is measured to be (2.34±0.18±0.52)×10-5. The first uncertainties are statistical and the second are systematic.",
author = "{BESIII Collaboration} and M. Ablikim and Achasov, {M. N.} and P. Adlarson and M. Albrecht and R. Aliberti and A. Amoroso and An, {M. R.} and Q. An and Bai, {X. H.} and Y. Bai and O. Bakina and {Baldini Ferroli}, R. and I. Balossino and Y. Ban and V. Batozskaya and D. Becker and K. Begzsuren and N. Berger and M. Bertani and D. Bettoni and F. Bianchi and J. Bloms and A. Bortone and I. Boyko and Briere, {R. A.} and A. Brueggemann and H. Cai and X. Cai and A. Calcaterra and Cao, {G. F.} and N. Cao and Cetin, {S. A.} and Chang, {J. F.} and Chang, {W. L.} and G. Chelkov and C. Chen and Chao Chen and G. Chen and Chen, {H. S.} and Chen, {M. L.} and Chen, {S. J.} and Chen, {S. M.} and Chen, {X. T.} and Chen, {X. R.} and Chen, {X. T.} and Chen, {Y. B.} and Chen, {Z. J.} and Cheng, {W. S.} and Muchnoi, {N. Yu} and Nikolaev, {I. B.}",
note = "Funding Information: The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Reseach and Development Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U2032110; National Natural Science Foundation of China (NSFC) under Contracts No. 11635010, No. 11735014, No. 11835012, No. 11935015, No. 11935016, No. 11935018, No. 11961141012, No. 12022510, No. 12025502, No. 12035009, No. 12035013, No. 12192260, No. 12192261, No. 12192262, No. 12192263, No. 12192264, and No. 12192265; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union{\textquoteright}s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts No. 443159800, Collaborative Research Center CRC 1044, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; STFC (United Kingdom); The Royal Society, UK under Contracts No. DH140054, and No. DH160214; The Swedish Research Council; U.S. Department of Energy under Contract No. DE-FG02-05ER41374. Publisher Copyright: {\textcopyright} 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the {"}https://creativecommons.org/licenses/by/4.0/{"}Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.",
year = "2022",
month = oct,
day = "1",
doi = "10.1103/PhysRevD.106.072006",
language = "English",
volume = "106",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "AMER PHYSICAL SOC",
number = "7",

}

RIS

TY - JOUR

T1 - Measurement of ψ (3686) → Λ Λ ¯ η and ψ (3686) → Λ Λ ¯ π0 decays

AU - BESIII Collaboration

AU - Ablikim, M.

AU - Achasov, M. N.

AU - Adlarson, P.

AU - Albrecht, M.

AU - Aliberti, R.

AU - Amoroso, A.

AU - An, M. R.

AU - An, Q.

AU - Bai, X. H.

AU - Bai, Y.

AU - Bakina, O.

AU - Baldini Ferroli, R.

AU - Balossino, I.

AU - Ban, Y.

AU - Batozskaya, V.

AU - Becker, D.

AU - Begzsuren, K.

AU - Berger, N.

AU - Bertani, M.

AU - Bettoni, D.

AU - Bianchi, F.

AU - Bloms, J.

AU - Bortone, A.

AU - Boyko, I.

AU - Briere, R. A.

AU - Brueggemann, A.

AU - Cai, H.

AU - Cai, X.

AU - Calcaterra, A.

AU - Cao, G. F.

AU - Cao, N.

AU - Cetin, S. A.

AU - Chang, J. F.

AU - Chang, W. L.

AU - Chelkov, G.

AU - Chen, C.

AU - Chen, Chao

AU - Chen, G.

AU - Chen, H. S.

AU - Chen, M. L.

AU - Chen, S. J.

AU - Chen, S. M.

AU - Chen, X. T.

AU - Chen, X. R.

AU - Chen, X. T.

AU - Chen, Y. B.

AU - Chen, Z. J.

AU - Cheng, W. S.

AU - Muchnoi, N. Yu

AU - Nikolaev, I. B.

N1 - Funding Information: The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Reseach and Development Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U2032110; National Natural Science Foundation of China (NSFC) under Contracts No. 11635010, No. 11735014, No. 11835012, No. 11935015, No. 11935016, No. 11935018, No. 11961141012, No. 12022510, No. 12025502, No. 12035009, No. 12035013, No. 12192260, No. 12192261, No. 12192262, No. 12192263, No. 12192264, and No. 12192265; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts No. 443159800, Collaborative Research Center CRC 1044, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; STFC (United Kingdom); The Royal Society, UK under Contracts No. DH140054, and No. DH160214; The Swedish Research Council; U.S. Department of Energy under Contract No. DE-FG02-05ER41374. Publisher Copyright: © 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.

PY - 2022/10/1

Y1 - 2022/10/1

N2 - Based on a sample of 448.1×106ψ(3686) events collected with the BESIII detector, a study of ψ(3686)→ΛΛ¯π0 and ψ(3686)→ΛΛ¯η is performed. Evidence of the isospin-violating decay ψ(3686)→ΛΛ¯π0 is found for the first time with a statistical significance of 3.7σ, the branching fraction B(ψ(3686)→ΛΛ¯π0) is measured to be (1.42±0.39±0.59)×10-6, and its corresponding upper limit is determined to be 2.47×10-6 at 90% confidence level. A partial wave analysis of ψ(3686)→ΛΛ¯η shows that the peak around Λη invariant mass threshold favors a Λ∗ resonance with mass and width in agreement with the Λ(1670). The branching fraction of the ψ(3686)→ΛΛ¯η is measured to be (2.34±0.18±0.52)×10-5. The first uncertainties are statistical and the second are systematic.

AB - Based on a sample of 448.1×106ψ(3686) events collected with the BESIII detector, a study of ψ(3686)→ΛΛ¯π0 and ψ(3686)→ΛΛ¯η is performed. Evidence of the isospin-violating decay ψ(3686)→ΛΛ¯π0 is found for the first time with a statistical significance of 3.7σ, the branching fraction B(ψ(3686)→ΛΛ¯π0) is measured to be (1.42±0.39±0.59)×10-6, and its corresponding upper limit is determined to be 2.47×10-6 at 90% confidence level. A partial wave analysis of ψ(3686)→ΛΛ¯η shows that the peak around Λη invariant mass threshold favors a Λ∗ resonance with mass and width in agreement with the Λ(1670). The branching fraction of the ψ(3686)→ΛΛ¯η is measured to be (2.34±0.18±0.52)×10-5. The first uncertainties are statistical and the second are systematic.

UR - http://www.scopus.com/inward/record.url?scp=85142200800&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.106.072006

DO - 10.1103/PhysRevD.106.072006

M3 - Article

AN - SCOPUS:85142200800

VL - 106

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 7

M1 - 072004

ER -

ID: 39666913