Standard

Maximum Intersection of Linear Codes and Codes Equivalent to Linear. / Avgustinovich, S. V.; Gorkunov, E. V.

In: Journal of Applied and Industrial Mathematics, Vol. 13, No. 4, 01.10.2019, p. 600-605.

Research output: Contribution to journalArticlepeer-review

Harvard

Avgustinovich, SV & Gorkunov, EV 2019, 'Maximum Intersection of Linear Codes and Codes Equivalent to Linear', Journal of Applied and Industrial Mathematics, vol. 13, no. 4, pp. 600-605. https://doi.org/10.1134/S1990478919040021

APA

Avgustinovich, S. V., & Gorkunov, E. V. (2019). Maximum Intersection of Linear Codes and Codes Equivalent to Linear. Journal of Applied and Industrial Mathematics, 13(4), 600-605. https://doi.org/10.1134/S1990478919040021

Vancouver

Avgustinovich SV, Gorkunov EV. Maximum Intersection of Linear Codes and Codes Equivalent to Linear. Journal of Applied and Industrial Mathematics. 2019 Oct 1;13(4):600-605. doi: 10.1134/S1990478919040021

Author

Avgustinovich, S. V. ; Gorkunov, E. V. / Maximum Intersection of Linear Codes and Codes Equivalent to Linear. In: Journal of Applied and Industrial Mathematics. 2019 ; Vol. 13, No. 4. pp. 600-605.

BibTeX

@article{c084c1e2f36e48a0a8a8159216598a71,
title = "Maximum Intersection of Linear Codes and Codes Equivalent to Linear",
abstract = "We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound (q - 2)M/q attainable for q ⩾ 3 for the size of the intersection of two different pseudolinear codes of the same size M.",
keywords = "code intersection, equivalent code, finite field, isometry, isotopy, linear code, MDS-code, pseudolinear code",
author = "Avgustinovich, {S. V.} and Gorkunov, {E. V.}",
note = "Publisher Copyright: {\textcopyright} 2019, Pleiades Publishing, Ltd.",
year = "2019",
month = oct,
day = "1",
doi = "10.1134/S1990478919040021",
language = "English",
volume = "13",
pages = "600--605",
journal = "Journal of Applied and Industrial Mathematics",
issn = "1990-4789",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "4",

}

RIS

TY - JOUR

T1 - Maximum Intersection of Linear Codes and Codes Equivalent to Linear

AU - Avgustinovich, S. V.

AU - Gorkunov, E. V.

N1 - Publisher Copyright: © 2019, Pleiades Publishing, Ltd.

PY - 2019/10/1

Y1 - 2019/10/1

N2 - We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound (q - 2)M/q attainable for q ⩾ 3 for the size of the intersection of two different pseudolinear codes of the same size M.

AB - We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound (q - 2)M/q attainable for q ⩾ 3 for the size of the intersection of two different pseudolinear codes of the same size M.

KW - code intersection

KW - equivalent code

KW - finite field

KW - isometry

KW - isotopy

KW - linear code

KW - MDS-code

KW - pseudolinear code

UR - http://www.scopus.com/inward/record.url?scp=85078933345&partnerID=8YFLogxK

U2 - 10.1134/S1990478919040021

DO - 10.1134/S1990478919040021

M3 - Article

AN - SCOPUS:85078933345

VL - 13

SP - 600

EP - 605

JO - Journal of Applied and Industrial Mathematics

JF - Journal of Applied and Industrial Mathematics

SN - 1990-4789

IS - 4

ER -

ID: 23427069