Research output: Contribution to journal › Article › peer-review
Maximum Intersection of Linear Codes and Codes Equivalent to Linear. / Avgustinovich, S. V.; Gorkunov, E. V.
In: Journal of Applied and Industrial Mathematics, Vol. 13, No. 4, 01.10.2019, p. 600-605.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Maximum Intersection of Linear Codes and Codes Equivalent to Linear
AU - Avgustinovich, S. V.
AU - Gorkunov, E. V.
N1 - Publisher Copyright: © 2019, Pleiades Publishing, Ltd.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound (q - 2)M/q attainable for q ⩾ 3 for the size of the intersection of two different pseudolinear codes of the same size M.
AB - We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound (q - 2)M/q attainable for q ⩾ 3 for the size of the intersection of two different pseudolinear codes of the same size M.
KW - code intersection
KW - equivalent code
KW - finite field
KW - isometry
KW - isotopy
KW - linear code
KW - MDS-code
KW - pseudolinear code
UR - http://www.scopus.com/inward/record.url?scp=85078933345&partnerID=8YFLogxK
U2 - 10.1134/S1990478919040021
DO - 10.1134/S1990478919040021
M3 - Article
AN - SCOPUS:85078933345
VL - 13
SP - 600
EP - 605
JO - Journal of Applied and Industrial Mathematics
JF - Journal of Applied and Industrial Mathematics
SN - 1990-4789
IS - 4
ER -
ID: 23427069