Research output: Contribution to journal › Article › peer-review
Lower bound of the supremum of ergodic averages for Zd AND Rd-actions. / Podvigin, Ivan Viktorovich.
In: Сибирские электронные математические известия, Vol. 17, 24.04.2020, p. 626-636.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Lower bound of the supremum of ergodic averages for Zd AND Rd-actions
AU - Podvigin, Ivan Viktorovich
PY - 2020/4/24
Y1 - 2020/4/24
N2 - For ergodic Zd and Rd-actions, we obtain a pointwise lower bound for the supremum of ergodic averages. For Zd-actions in the case when the supremum is taken over multi-indices exceeding n→ located in a certain sector, the resulting inequality is not improvable over n→ in the class of all averaging integrable functions.
AB - For ergodic Zd and Rd-actions, we obtain a pointwise lower bound for the supremum of ergodic averages. For Zd-actions in the case when the supremum is taken over multi-indices exceeding n→ located in a certain sector, the resulting inequality is not improvable over n→ in the class of all averaging integrable functions.
KW - Individual ergodic theorem
KW - Rates of convergence in ergodic theorems
KW - Wiener-wintner ergodic theorem
KW - individual ergodic theorem
KW - Wiener-Wintner ergodic theorem
KW - CONVERGENCE
KW - rates of convergence in ergodic theorems
UR - http://www.scopus.com/inward/record.url?scp=85090911760&partnerID=8YFLogxK
U2 - 10.33048/semi.2020.17.041
DO - 10.33048/semi.2020.17.041
M3 - Article
AN - SCOPUS:85090911760
VL - 17
SP - 626
EP - 636
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 25301386