Standard

Lower bound of the supremum of ergodic averages for Zd AND Rd-actions. / Podvigin, Ivan Viktorovich.

In: Сибирские электронные математические известия, Vol. 17, 24.04.2020, p. 626-636.

Research output: Contribution to journalArticlepeer-review

Harvard

Podvigin, IV 2020, 'Lower bound of the supremum of ergodic averages for Zd AND Rd-actions', Сибирские электронные математические известия, vol. 17, pp. 626-636. https://doi.org/10.33048/semi.2020.17.041

APA

Podvigin, I. V. (2020). Lower bound of the supremum of ergodic averages for Zd AND Rd-actions. Сибирские электронные математические известия, 17, 626-636. https://doi.org/10.33048/semi.2020.17.041

Vancouver

Podvigin IV. Lower bound of the supremum of ergodic averages for Zd AND Rd-actions. Сибирские электронные математические известия. 2020 Apr 24;17:626-636. doi: 10.33048/semi.2020.17.041

Author

Podvigin, Ivan Viktorovich. / Lower bound of the supremum of ergodic averages for Zd AND Rd-actions. In: Сибирские электронные математические известия. 2020 ; Vol. 17. pp. 626-636.

BibTeX

@article{db5154775b05426587716979b50c8ac1,
title = "Lower bound of the supremum of ergodic averages for Zd AND Rd-actions",
abstract = "For ergodic Zd and Rd-actions, we obtain a pointwise lower bound for the supremum of ergodic averages. For Zd-actions in the case when the supremum is taken over multi-indices exceeding n→ located in a certain sector, the resulting inequality is not improvable over n→ in the class of all averaging integrable functions.",
keywords = "Individual ergodic theorem, Rates of convergence in ergodic theorems, Wiener-wintner ergodic theorem, individual ergodic theorem, Wiener-Wintner ergodic theorem, CONVERGENCE, rates of convergence in ergodic theorems",
author = "Podvigin, {Ivan Viktorovich}",
year = "2020",
month = apr,
day = "24",
doi = "10.33048/semi.2020.17.041",
language = "English",
volume = "17",
pages = "626--636",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Lower bound of the supremum of ergodic averages for Zd AND Rd-actions

AU - Podvigin, Ivan Viktorovich

PY - 2020/4/24

Y1 - 2020/4/24

N2 - For ergodic Zd and Rd-actions, we obtain a pointwise lower bound for the supremum of ergodic averages. For Zd-actions in the case when the supremum is taken over multi-indices exceeding n→ located in a certain sector, the resulting inequality is not improvable over n→ in the class of all averaging integrable functions.

AB - For ergodic Zd and Rd-actions, we obtain a pointwise lower bound for the supremum of ergodic averages. For Zd-actions in the case when the supremum is taken over multi-indices exceeding n→ located in a certain sector, the resulting inequality is not improvable over n→ in the class of all averaging integrable functions.

KW - Individual ergodic theorem

KW - Rates of convergence in ergodic theorems

KW - Wiener-wintner ergodic theorem

KW - individual ergodic theorem

KW - Wiener-Wintner ergodic theorem

KW - CONVERGENCE

KW - rates of convergence in ergodic theorems

UR - http://www.scopus.com/inward/record.url?scp=85090911760&partnerID=8YFLogxK

U2 - 10.33048/semi.2020.17.041

DO - 10.33048/semi.2020.17.041

M3 - Article

AN - SCOPUS:85090911760

VL - 17

SP - 626

EP - 636

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 25301386