Standard

Local distributions for eigenfunctions and perfect colorings of q-ary Hamming graph. / Vasil’eva, Anastasia.

In: Designs, Codes, and Cryptography, Vol. 87, No. 2-3, 15.03.2019, p. 509-516.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Vasil’eva A. Local distributions for eigenfunctions and perfect colorings of q-ary Hamming graph. Designs, Codes, and Cryptography. 2019 Mar 15;87(2-3):509-516. doi: 10.1007/s10623-018-0559-1

Author

Vasil’eva, Anastasia. / Local distributions for eigenfunctions and perfect colorings of q-ary Hamming graph. In: Designs, Codes, and Cryptography. 2019 ; Vol. 87, No. 2-3. pp. 509-516.

BibTeX

@article{96e9c408ce954ebfaba5dfa0bd6d8a10,
title = "Local distributions for eigenfunctions and perfect colorings of q-ary Hamming graph",
abstract = "We study eigenfunctions and perfect colorings of the n-dimensional q-ary Hamming graph. We obtain the formulae of interdependence of local distributions for an eigenfunction in two orthogonal faces. We prove an analogous result for perfect colorings.",
keywords = "Completely regular code, Eigenfunction, Equitable partition, Local distribution, Perfect coloring, q-ary Hamming graph, RECONSTRUCTION, SPECTRA",
author = "Anastasia Vasil{\textquoteright}eva",
year = "2019",
month = mar,
day = "15",
doi = "10.1007/s10623-018-0559-1",
language = "English",
volume = "87",
pages = "509--516",
journal = "Designs, Codes, and Cryptography",
issn = "0925-1022",
publisher = "Springer Netherlands",
number = "2-3",

}

RIS

TY - JOUR

T1 - Local distributions for eigenfunctions and perfect colorings of q-ary Hamming graph

AU - Vasil’eva, Anastasia

PY - 2019/3/15

Y1 - 2019/3/15

N2 - We study eigenfunctions and perfect colorings of the n-dimensional q-ary Hamming graph. We obtain the formulae of interdependence of local distributions for an eigenfunction in two orthogonal faces. We prove an analogous result for perfect colorings.

AB - We study eigenfunctions and perfect colorings of the n-dimensional q-ary Hamming graph. We obtain the formulae of interdependence of local distributions for an eigenfunction in two orthogonal faces. We prove an analogous result for perfect colorings.

KW - Completely regular code

KW - Eigenfunction

KW - Equitable partition

KW - Local distribution

KW - Perfect coloring

KW - q-ary Hamming graph

KW - RECONSTRUCTION

KW - SPECTRA

UR - http://www.scopus.com/inward/record.url?scp=85055675184&partnerID=8YFLogxK

U2 - 10.1007/s10623-018-0559-1

DO - 10.1007/s10623-018-0559-1

M3 - Article

AN - SCOPUS:85055675184

VL - 87

SP - 509

EP - 516

JO - Designs, Codes, and Cryptography

JF - Designs, Codes, and Cryptography

SN - 0925-1022

IS - 2-3

ER -

ID: 17249585