Standard

Lattices of subclasses. III. / Basheyeva, Aynur; Nurakunov, Anvar; Schwidefsky, Marina et al.

In: Сибирские электронные математические известия, Vol. 14, 01.01.2017, p. 252-263.

Research output: Contribution to journalArticlepeer-review

Harvard

Basheyeva, A, Nurakunov, A, Schwidefsky, M & Zamojska-Dzienio, A 2017, 'Lattices of subclasses. III', Сибирские электронные математические известия, vol. 14, pp. 252-263. https://doi.org/10.17377/semi.2017.14.023

APA

Basheyeva, A., Nurakunov, A., Schwidefsky, M., & Zamojska-Dzienio, A. (2017). Lattices of subclasses. III. Сибирские электронные математические известия, 14, 252-263. https://doi.org/10.17377/semi.2017.14.023

Vancouver

Basheyeva A, Nurakunov A, Schwidefsky M, Zamojska-Dzienio A. Lattices of subclasses. III. Сибирские электронные математические известия. 2017 Jan 1;14:252-263. doi: 10.17377/semi.2017.14.023

Author

Basheyeva, Aynur ; Nurakunov, Anvar ; Schwidefsky, Marina et al. / Lattices of subclasses. III. In: Сибирские электронные математические известия. 2017 ; Vol. 14. pp. 252-263.

BibTeX

@article{e4862681c10147bf9585960f0e94a02b,
title = "Lattices of subclasses. III",
abstract = "We prove that for certain Q-universal quasivarieties K, the lattice of K-quasivarieties contains continuum many subquasivarieties with the undecidable quasi-equational theory and for which the finite membership problem is also undecidable. Moreover, we prove that certain Q-universal quasivarieties have continuum many subquasivarieties with no independent quasi-equational basis.",
keywords = "Abelian group, Differential groupoid, Finite membership problem, Graph, Independent basis, Q- universal, Quasi-equational theory, Quasi-identity, Quasivariety, Undecidable theory",
author = "Aynur Basheyeva and Anvar Nurakunov and Marina Schwidefsky and Anna Zamojska-Dzienio",
year = "2017",
month = jan,
day = "1",
doi = "10.17377/semi.2017.14.023",
language = "English",
volume = "14",
pages = "252--263",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Lattices of subclasses. III

AU - Basheyeva, Aynur

AU - Nurakunov, Anvar

AU - Schwidefsky, Marina

AU - Zamojska-Dzienio, Anna

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We prove that for certain Q-universal quasivarieties K, the lattice of K-quasivarieties contains continuum many subquasivarieties with the undecidable quasi-equational theory and for which the finite membership problem is also undecidable. Moreover, we prove that certain Q-universal quasivarieties have continuum many subquasivarieties with no independent quasi-equational basis.

AB - We prove that for certain Q-universal quasivarieties K, the lattice of K-quasivarieties contains continuum many subquasivarieties with the undecidable quasi-equational theory and for which the finite membership problem is also undecidable. Moreover, we prove that certain Q-universal quasivarieties have continuum many subquasivarieties with no independent quasi-equational basis.

KW - Abelian group

KW - Differential groupoid

KW - Finite membership problem

KW - Graph

KW - Independent basis

KW - Q- universal

KW - Quasi-equational theory

KW - Quasi-identity

KW - Quasivariety

KW - Undecidable theory

UR - http://www.scopus.com/inward/record.url?scp=85049330624&partnerID=8YFLogxK

U2 - 10.17377/semi.2017.14.023

DO - 10.17377/semi.2017.14.023

M3 - Article

AN - SCOPUS:85049330624

VL - 14

SP - 252

EP - 263

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 21336411