Lattices of subclasses. III. / Basheyeva, Aynur; Nurakunov, Anvar; Schwidefsky, Marina et al.
In: Сибирские электронные математические известия, Vol. 14, 01.01.2017, p. 252-263.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Lattices of subclasses. III
AU - Basheyeva, Aynur
AU - Nurakunov, Anvar
AU - Schwidefsky, Marina
AU - Zamojska-Dzienio, Anna
PY - 2017/1/1
Y1 - 2017/1/1
N2 - We prove that for certain Q-universal quasivarieties K, the lattice of K-quasivarieties contains continuum many subquasivarieties with the undecidable quasi-equational theory and for which the finite membership problem is also undecidable. Moreover, we prove that certain Q-universal quasivarieties have continuum many subquasivarieties with no independent quasi-equational basis.
AB - We prove that for certain Q-universal quasivarieties K, the lattice of K-quasivarieties contains continuum many subquasivarieties with the undecidable quasi-equational theory and for which the finite membership problem is also undecidable. Moreover, we prove that certain Q-universal quasivarieties have continuum many subquasivarieties with no independent quasi-equational basis.
KW - Abelian group
KW - Differential groupoid
KW - Finite membership problem
KW - Graph
KW - Independent basis
KW - Q- universal
KW - Quasi-equational theory
KW - Quasi-identity
KW - Quasivariety
KW - Undecidable theory
UR - http://www.scopus.com/inward/record.url?scp=85049330624&partnerID=8YFLogxK
U2 - 10.17377/semi.2017.14.023
DO - 10.17377/semi.2017.14.023
M3 - Article
AN - SCOPUS:85049330624
VL - 14
SP - 252
EP - 263
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 21336411