Standard

Kulakov Algebraic Systems on Groups. / Neshchadim, M. V.; Simonov, A. A.

In: Siberian Mathematical Journal, Vol. 62, No. 6, 11, 11.2021, p. 1100-1109.

Research output: Contribution to journalArticlepeer-review

Harvard

Neshchadim, MV & Simonov, AA 2021, 'Kulakov Algebraic Systems on Groups', Siberian Mathematical Journal, vol. 62, no. 6, 11, pp. 1100-1109. https://doi.org/10.1134/S0037446621060112

APA

Vancouver

Neshchadim MV, Simonov AA. Kulakov Algebraic Systems on Groups. Siberian Mathematical Journal. 2021 Nov;62(6):1100-1109. 11. doi: 10.1134/S0037446621060112

Author

Neshchadim, M. V. ; Simonov, A. A. / Kulakov Algebraic Systems on Groups. In: Siberian Mathematical Journal. 2021 ; Vol. 62, No. 6. pp. 1100-1109.

BibTeX

@article{3d2ea1169c8c4ee390c4e1db75f3f0a5,
title = "Kulakov Algebraic Systems on Groups",
abstract = "We define a Kulakov algebraic systemas a three-sorted algebraic systemsatisfying the axioms of a physical structure.We prove a strong version of Ionin{\textquoteright}s Theoremon the equivalence of the rank $ (2,2) $physical structureto the structure of an abstract group.We consider nongroup Kulakov algebraic systems andcharacterize Kulakov algebraic systems over arbitrary groups.",
keywords = "512.74:512.643.8, group, groupoid, Kulakov algebraic system, loop, physical structure, semigroup, three-sorted algebra",
author = "Neshchadim, {M. V.} and Simonov, {A. A.}",
note = "Neshchadim, M. V. Kulakov Algebraic Systems on Groups // Siberian Mathematical Journal. – 2021. – Vol. 62. – No 6. – P. 1100-1109. Publisher Copyright: {\textcopyright} 2021, Pleiades Publishing, Ltd.",
year = "2021",
month = nov,
doi = "10.1134/S0037446621060112",
language = "English",
volume = "62",
pages = "1100--1109",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "6",

}

RIS

TY - JOUR

T1 - Kulakov Algebraic Systems on Groups

AU - Neshchadim, M. V.

AU - Simonov, A. A.

N1 - Neshchadim, M. V. Kulakov Algebraic Systems on Groups // Siberian Mathematical Journal. – 2021. – Vol. 62. – No 6. – P. 1100-1109. Publisher Copyright: © 2021, Pleiades Publishing, Ltd.

PY - 2021/11

Y1 - 2021/11

N2 - We define a Kulakov algebraic systemas a three-sorted algebraic systemsatisfying the axioms of a physical structure.We prove a strong version of Ionin’s Theoremon the equivalence of the rank $ (2,2) $physical structureto the structure of an abstract group.We consider nongroup Kulakov algebraic systems andcharacterize Kulakov algebraic systems over arbitrary groups.

AB - We define a Kulakov algebraic systemas a three-sorted algebraic systemsatisfying the axioms of a physical structure.We prove a strong version of Ionin’s Theoremon the equivalence of the rank $ (2,2) $physical structureto the structure of an abstract group.We consider nongroup Kulakov algebraic systems andcharacterize Kulakov algebraic systems over arbitrary groups.

KW - 512.74:512.643.8

KW - group

KW - groupoid

KW - Kulakov algebraic system

KW - loop

KW - physical structure

KW - semigroup

KW - three-sorted algebra

UR - http://www.scopus.com/inward/record.url?scp=85120168165&partnerID=8YFLogxK

UR - https://elibrary.ru/item.asp?id=47533758

UR - https://www.mendeley.com/catalogue/198bf9ec-6981-3951-8834-de31af848029/

U2 - 10.1134/S0037446621060112

DO - 10.1134/S0037446621060112

M3 - Article

AN - SCOPUS:85120168165

VL - 62

SP - 1100

EP - 1109

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 6

M1 - 11

ER -

ID: 34856222