Research output: Contribution to journal › Article › peer-review
Isomorphisms of Sobolev Spaces on Riemannian Manifolds and Quasiconformal Mappings. / Vodopyanov, S. K.
In: Siberian Mathematical Journal, Vol. 60, No. 5, 01.09.2019, p. 774-804.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Isomorphisms of Sobolev Spaces on Riemannian Manifolds and Quasiconformal Mappings
AU - Vodopyanov, S. K.
N1 - Publisher Copyright: © 2019, Pleiades Publishing, Inc. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - We prove that a measurable mapping of domains in a complete Riemannian manifold induces an isomorphism of Sobolev spaces with the first generalized derivatives whose summability exponent equals the (Hausdorff) dimension of the manifold if and only if the mapping coincides with some quasiconformal mapping almost everywhere.
AB - We prove that a measurable mapping of domains in a complete Riemannian manifold induces an isomorphism of Sobolev spaces with the first generalized derivatives whose summability exponent equals the (Hausdorff) dimension of the manifold if and only if the mapping coincides with some quasiconformal mapping almost everywhere.
KW - composition operator
KW - quasiconformal mapping
KW - Riemannian manifold
KW - Sobolev space
UR - http://www.scopus.com/inward/record.url?scp=85073390252&partnerID=8YFLogxK
U2 - 10.1134/S0037446619050033
DO - 10.1134/S0037446619050033
M3 - Article
AN - SCOPUS:85073390252
VL - 60
SP - 774
EP - 804
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 5
ER -
ID: 21938776