Standard

Inverse problems of determining coefficients of time type in a degenerate parabolic equation. / Kozhanov, A. I.; Abulkayirov, U. U.; Ashurova, G. R.

In: Вестник Карагандинского университета. Серия Математика, Vol. 106, No. 2, 2022, p. 128-142.

Research output: Contribution to journalArticlepeer-review

Harvard

Kozhanov, AI, Abulkayirov, UU & Ashurova, GR 2022, 'Inverse problems of determining coefficients of time type in a degenerate parabolic equation', Вестник Карагандинского университета. Серия Математика, vol. 106, no. 2, pp. 128-142. https://doi.org/10.31489/2022M2/128-142

APA

Kozhanov, A. I., Abulkayirov, U. U., & Ashurova, G. R. (2022). Inverse problems of determining coefficients of time type in a degenerate parabolic equation. Вестник Карагандинского университета. Серия Математика, 106(2), 128-142. https://doi.org/10.31489/2022M2/128-142

Vancouver

Kozhanov AI, Abulkayirov UU, Ashurova GR. Inverse problems of determining coefficients of time type in a degenerate parabolic equation. Вестник Карагандинского университета. Серия Математика. 2022;106(2):128-142. doi: 10.31489/2022M2/128-142

Author

Kozhanov, A. I. ; Abulkayirov, U. U. ; Ashurova, G. R. / Inverse problems of determining coefficients of time type in a degenerate parabolic equation. In: Вестник Карагандинского университета. Серия Математика. 2022 ; Vol. 106, No. 2. pp. 128-142.

BibTeX

@article{722e35d2ff184fcdaa679d7bc01f75f1,
title = "Inverse problems of determining coefficients of time type in a degenerate parabolic equation",
abstract = "The paper is devoted to the study of the solvability of inverse coefficient problems for degenerate parabolic equations of the second order. We study both linear inverse problems - the problems of determining an unknown right-hand side (external influence), and nonlinear problems of determining an unknown coefficient of the equation itself. The peculiarity of the studied work is that its unknown coefficients are functions of a time variable only. The work aims to prove the existence and uniqueness of regular solutions to the studied problems (having all the generalized in the sense of S.L. Sobolev derivatives entering the equation).",
keywords = "degenerate parabolic equations, existence, linear inverse problems, non-linear inverse problems, regular solutions",
author = "Kozhanov, {A. I.} and Abulkayirov, {U. U.} and Ashurova, {G. R.}",
note = "Публикация для корректировки.",
year = "2022",
doi = "10.31489/2022M2/128-142",
language = "English",
volume = "106",
pages = "128--142",
journal = "Вестник Карагандинского университета. Серия Математика",
issn = "2518-7929",
publisher = "KARAGANDA STATE UNIV",
number = "2",

}

RIS

TY - JOUR

T1 - Inverse problems of determining coefficients of time type in a degenerate parabolic equation

AU - Kozhanov, A. I.

AU - Abulkayirov, U. U.

AU - Ashurova, G. R.

N1 - Публикация для корректировки.

PY - 2022

Y1 - 2022

N2 - The paper is devoted to the study of the solvability of inverse coefficient problems for degenerate parabolic equations of the second order. We study both linear inverse problems - the problems of determining an unknown right-hand side (external influence), and nonlinear problems of determining an unknown coefficient of the equation itself. The peculiarity of the studied work is that its unknown coefficients are functions of a time variable only. The work aims to prove the existence and uniqueness of regular solutions to the studied problems (having all the generalized in the sense of S.L. Sobolev derivatives entering the equation).

AB - The paper is devoted to the study of the solvability of inverse coefficient problems for degenerate parabolic equations of the second order. We study both linear inverse problems - the problems of determining an unknown right-hand side (external influence), and nonlinear problems of determining an unknown coefficient of the equation itself. The peculiarity of the studied work is that its unknown coefficients are functions of a time variable only. The work aims to prove the existence and uniqueness of regular solutions to the studied problems (having all the generalized in the sense of S.L. Sobolev derivatives entering the equation).

KW - degenerate parabolic equations

KW - existence

KW - linear inverse problems

KW - non-linear inverse problems

KW - regular solutions

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85147117745&origin=inward&txGid=ebb8dc23e1fc2cd90f503fd91200b889

UR - https://www.mendeley.com/catalogue/001c04e0-e3ab-333e-b164-913bc3f702fc/

U2 - 10.31489/2022M2/128-142

DO - 10.31489/2022M2/128-142

M3 - Article

VL - 106

SP - 128

EP - 142

JO - Вестник Карагандинского университета. Серия Математика

JF - Вестник Карагандинского университета. Серия Математика

SN - 2518-7929

IS - 2

ER -

ID: 55715718