Research output: Contribution to journal › Article › peer-review
Influence of pore pressure on the development of a hydraulic fracture in poroelastic medium. / Golovin, S. V.; Baykin, A. N.
In: International Journal of Rock Mechanics and Mining Sciences, Vol. 108, 01.08.2018, p. 198-208.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Influence of pore pressure on the development of a hydraulic fracture in poroelastic medium
AU - Golovin, S. V.
AU - Baykin, A. N.
N1 - Publisher Copyright: © 2018 Elsevier Ltd
PY - 2018/8/1
Y1 - 2018/8/1
N2 - In this paper we demonstrate the influence of the pore pressure on the development of a hydraulically-driven fracture in a poroelastic medium. We present a novel numerical model for propagation of a planar hydraulic fracture and prove its correctness by the analysis of the numerical convergence and by the comparison with known solutions. The advantage of the algorithm is that it does not require distinguishing of the fracture's tips and reconstruction of the numerical mesh according to the fracture propagation. Next, we perform a thorough analysis of the interplay of fluid filtration and redistribution of stresses near the fracture. We demonstrate that the fracture length decreases with the increase of the Biot's number (the parameter that determines the contribution of the pore pressure to the stress) and explain this effect by analysing the near-fracture pore pressure, rock deformation and stresses. We conclude that the correct account for the fluid exchange between the fracture and the rock should be based not only on physical parameters of the rock and fluid, but also on the analysis of stresses near the fracture.
AB - In this paper we demonstrate the influence of the pore pressure on the development of a hydraulically-driven fracture in a poroelastic medium. We present a novel numerical model for propagation of a planar hydraulic fracture and prove its correctness by the analysis of the numerical convergence and by the comparison with known solutions. The advantage of the algorithm is that it does not require distinguishing of the fracture's tips and reconstruction of the numerical mesh according to the fracture propagation. Next, we perform a thorough analysis of the interplay of fluid filtration and redistribution of stresses near the fracture. We demonstrate that the fracture length decreases with the increase of the Biot's number (the parameter that determines the contribution of the pore pressure to the stress) and explain this effect by analysing the near-fracture pore pressure, rock deformation and stresses. We conclude that the correct account for the fluid exchange between the fracture and the rock should be based not only on physical parameters of the rock and fluid, but also on the analysis of stresses near the fracture.
KW - Finite element method
KW - Hydraulic fracture
KW - Pore pressure influence
KW - Poroelasticity
UR - http://www.scopus.com/inward/record.url?scp=85049303663&partnerID=8YFLogxK
U2 - 10.1016/j.ijrmms.2018.04.055
DO - 10.1016/j.ijrmms.2018.04.055
M3 - Article
AN - SCOPUS:85049303663
VL - 108
SP - 198
EP - 208
JO - International Journal of Rock Mechanics and Minings Sciences
JF - International Journal of Rock Mechanics and Minings Sciences
SN - 1365-1609
ER -
ID: 14318349