Standard

Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations. / Goncharov, S. S.; Bazhenov, N. A.; Marchuk, M. I.

In: Journal of Mathematical Sciences (United States), Vol. 221, No. 6, 01.03.2017, p. 840-848.

Research output: Contribution to journalArticlepeer-review

Harvard

Goncharov, SS, Bazhenov, NA & Marchuk, MI 2017, 'Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations', Journal of Mathematical Sciences (United States), vol. 221, no. 6, pp. 840-848. https://doi.org/10.1007/s10958-017-3272-0

APA

Vancouver

Goncharov SS, Bazhenov NA, Marchuk MI. Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations. Journal of Mathematical Sciences (United States). 2017 Mar 1;221(6):840-848. doi: 10.1007/s10958-017-3272-0

Author

Goncharov, S. S. ; Bazhenov, N. A. ; Marchuk, M. I. / Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations. In: Journal of Mathematical Sciences (United States). 2017 ; Vol. 221, No. 6. pp. 840-848.

BibTeX

@article{ba0e46df36f249848b90417344ae4caa,
title = "Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations",
abstract = "We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations.",
author = "Goncharov, {S. S.} and Bazhenov, {N. A.} and Marchuk, {M. I.}",
year = "2017",
month = mar,
day = "1",
doi = "10.1007/s10958-017-3272-0",
language = "English",
volume = "221",
pages = "840--848",
journal = "Journal of Mathematical Sciences (United States)",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations

AU - Goncharov, S. S.

AU - Bazhenov, N. A.

AU - Marchuk, M. I.

PY - 2017/3/1

Y1 - 2017/3/1

N2 - We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations.

AB - We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations.

UR - http://www.scopus.com/inward/record.url?scp=85011635917&partnerID=8YFLogxK

U2 - 10.1007/s10958-017-3272-0

DO - 10.1007/s10958-017-3272-0

M3 - Article

AN - SCOPUS:85011635917

VL - 221

SP - 840

EP - 848

JO - Journal of Mathematical Sciences (United States)

JF - Journal of Mathematical Sciences (United States)

SN - 1072-3374

IS - 6

ER -

ID: 10311865