Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations. / Goncharov, S. S.; Bazhenov, N. A.; Marchuk, M. I.
In: Journal of Mathematical Sciences (United States), Vol. 221, No. 6, 01.03.2017, p. 840-848.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations
AU - Goncharov, S. S.
AU - Bazhenov, N. A.
AU - Marchuk, M. I.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations.
AB - We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations.
UR - http://www.scopus.com/inward/record.url?scp=85011635917&partnerID=8YFLogxK
U2 - 10.1007/s10958-017-3272-0
DO - 10.1007/s10958-017-3272-0
M3 - Article
AN - SCOPUS:85011635917
VL - 221
SP - 840
EP - 848
JO - Journal of Mathematical Sciences (United States)
JF - Journal of Mathematical Sciences (United States)
SN - 1072-3374
IS - 6
ER -
ID: 10311865