Standard

Implementation of one-qubit quantum gates with individual addressing of two rubidium atoms in two optical dipole traps. / Beterov, I. I.; Yakshina, E. A.; Tretyakov, D. B. et al.

In: Quantum Electronics, Vol. 51, No. 6, 2, 06.2021, p. 464-472.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{d0e012ce16b24090a8656363878b885b,
title = "Implementation of one-qubit quantum gates with individual addressing of two rubidium atoms in two optical dipole traps",
abstract = "We report the results of experiments on implementing individually addressable one-qubit quantum gates on a microwave transition with two 87Rb atoms in two optical dipole traps. Addressing is carried out using additional focused laser light, which results in a differential light shift of the microwave transition frequency. In the absence of addressing in each of the atoms, Rabi oscillations are obtained on the microwave clock transition 5S1/2 (F = 2, mF = 0) {\textregistered} 5S1/2(F = 1, mF = 0) between two working levels of qubits with a frequency of up to 5.1 kHz, a contrast up to 98 %, and a coherence time up to 4 ms. When addressing is turned on, the probability of a microwave transition in the addressed atom is suppressed to an average value of less than 5 %. The Rabi oscillations remaining in the other atom have the same contrast and correspond to the implementation of individually addressable basic one-qubit quantum operations (Hadamard gate and NOT gate) from different initial states of a qubit with an average fidelity of 92% ± 3 %. After renormalising this fidelity to the error in the preparation and measurement of quantum states of qubits, an estimate of 97% ± 3% is obtained for the fidelity of individual qubit rotations. ",
keywords = "One-qubit gates, Optical traps, Single atoms",
author = "Beterov, {I. I.} and Yakshina, {E. A.} and Tretyakov, {D. B.} and Entin, {V. M.} and Al'yanova, {N. V.} and Mityanin, {K. Y.} and Ryabtsev, {I. I.} and Faruk, {A. M.}",
note = "Бетеров И.И., Якшина Е.А., Третьяков Д.Б., Энтин В.М., Альянова Н.В., Митянин К.Ю., Фарук А.М., Рябцев И.И. Реализация однокубитовых квантовых операций с индивидуальной адресацией двух атомов рубидия в двух оптических дипольных ловушках // Квантовая электроника. – 2021. – Т. 51. – № 6. – С. 464-472. Работа была поддержана РФФИ (в части теории квантовой информатики) (грант № 19-52-15010), РНФ (в части экспериментальной реализации квантовых операций) (грант № 18-12-00313), Фондом перспективных исследований (в части создания лазерных систем возбуждения и накачки атомов в дипольной ловушке) и Новосибирским государственным университетом (в части создания системы лазерного охлаждения в магнитооптической ловушке).",
year = "2021",
month = jun,
doi = "10.1070/QEL17583",
language = "English",
volume = "51",
pages = "464--472",
journal = "Quantum Electronics",
issn = "1063-7818",
publisher = "Turpion Ltd.",
number = "6",

}

RIS

TY - JOUR

T1 - Implementation of one-qubit quantum gates with individual addressing of two rubidium atoms in two optical dipole traps

AU - Beterov, I. I.

AU - Yakshina, E. A.

AU - Tretyakov, D. B.

AU - Entin, V. M.

AU - Al'yanova, N. V.

AU - Mityanin, K. Y.

AU - Ryabtsev, I. I.

AU - Faruk, A. M.

N1 - Бетеров И.И., Якшина Е.А., Третьяков Д.Б., Энтин В.М., Альянова Н.В., Митянин К.Ю., Фарук А.М., Рябцев И.И. Реализация однокубитовых квантовых операций с индивидуальной адресацией двух атомов рубидия в двух оптических дипольных ловушках // Квантовая электроника. – 2021. – Т. 51. – № 6. – С. 464-472. Работа была поддержана РФФИ (в части теории квантовой информатики) (грант № 19-52-15010), РНФ (в части экспериментальной реализации квантовых операций) (грант № 18-12-00313), Фондом перспективных исследований (в части создания лазерных систем возбуждения и накачки атомов в дипольной ловушке) и Новосибирским государственным университетом (в части создания системы лазерного охлаждения в магнитооптической ловушке).

PY - 2021/6

Y1 - 2021/6

N2 - We report the results of experiments on implementing individually addressable one-qubit quantum gates on a microwave transition with two 87Rb atoms in two optical dipole traps. Addressing is carried out using additional focused laser light, which results in a differential light shift of the microwave transition frequency. In the absence of addressing in each of the atoms, Rabi oscillations are obtained on the microwave clock transition 5S1/2 (F = 2, mF = 0) ® 5S1/2(F = 1, mF = 0) between two working levels of qubits with a frequency of up to 5.1 kHz, a contrast up to 98 %, and a coherence time up to 4 ms. When addressing is turned on, the probability of a microwave transition in the addressed atom is suppressed to an average value of less than 5 %. The Rabi oscillations remaining in the other atom have the same contrast and correspond to the implementation of individually addressable basic one-qubit quantum operations (Hadamard gate and NOT gate) from different initial states of a qubit with an average fidelity of 92% ± 3 %. After renormalising this fidelity to the error in the preparation and measurement of quantum states of qubits, an estimate of 97% ± 3% is obtained for the fidelity of individual qubit rotations.

AB - We report the results of experiments on implementing individually addressable one-qubit quantum gates on a microwave transition with two 87Rb atoms in two optical dipole traps. Addressing is carried out using additional focused laser light, which results in a differential light shift of the microwave transition frequency. In the absence of addressing in each of the atoms, Rabi oscillations are obtained on the microwave clock transition 5S1/2 (F = 2, mF = 0) ® 5S1/2(F = 1, mF = 0) between two working levels of qubits with a frequency of up to 5.1 kHz, a contrast up to 98 %, and a coherence time up to 4 ms. When addressing is turned on, the probability of a microwave transition in the addressed atom is suppressed to an average value of less than 5 %. The Rabi oscillations remaining in the other atom have the same contrast and correspond to the implementation of individually addressable basic one-qubit quantum operations (Hadamard gate and NOT gate) from different initial states of a qubit with an average fidelity of 92% ± 3 %. After renormalising this fidelity to the error in the preparation and measurement of quantum states of qubits, an estimate of 97% ± 3% is obtained for the fidelity of individual qubit rotations.

KW - One-qubit gates

KW - Optical traps

KW - Single atoms

UR - http://www.scopus.com/inward/record.url?scp=85107865698&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=46858531

U2 - 10.1070/QEL17583

DO - 10.1070/QEL17583

M3 - Article

AN - SCOPUS:85107865698

VL - 51

SP - 464

EP - 472

JO - Quantum Electronics

JF - Quantum Electronics

SN - 1063-7818

IS - 6

M1 - 2

ER -

ID: 28866039