Research output: Contribution to journal › Article › peer-review
High-Degree Polynomial Integrals of a Natural System on the Two-Dimensional Torus. / Agapov, S. V.
In: Siberian Mathematical Journal, Vol. 64, No. 2, 03.2023, p. 261-268.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - High-Degree Polynomial Integrals of a Natural System on the Two-Dimensional Torus
AU - Agapov, S. V.
N1 - The author was supported by the Russian Science Foundation (Grant no. 19–11–00044–P). Публикация для корректировки.
PY - 2023/3
Y1 - 2023/3
N2 - We study a natural mechanical system on the two-dimensional torus which admitsan additional first integral polynomial in momenta of an odd degree $ N $andindependent of the energy integral. For $ N=5,7 $, we obtain the estimateson the number of straight lines in the spectrum of the potential.
AB - We study a natural mechanical system on the two-dimensional torus which admitsan additional first integral polynomial in momenta of an odd degree $ N $andindependent of the energy integral. For $ N=5,7 $, we obtain the estimateson the number of straight lines in the spectrum of the potential.
KW - 517.938
KW - first integral polynomial in momenta
KW - natural mechanical system
KW - spectrum of the potential
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85151085100&origin=inward&txGid=c6d3e433be2a1b651d91c08c53970754
UR - https://www.mendeley.com/catalogue/7debb85b-d033-39a6-934f-4b5befa756ff/
U2 - 10.1134/S0037446623020015
DO - 10.1134/S0037446623020015
M3 - Article
VL - 64
SP - 261
EP - 268
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 2
ER -
ID: 59242956