Research output: Contribution to journal › Article › peer-review
High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics. / Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy et al.
In: Journal of Computational Physics, Vol. 348, 01.11.2017, p. 298-342.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics
AU - Dumbser, Michael
AU - Peshkov, Ilya
AU - Romenski, Evgeniy
AU - Zanotti, Olindo
PY - 2017/11/1
Y1 - 2017/11/1
N2 - In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler–Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.
AB - In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler–Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.
KW - Arbitrary high-order ADER Discontinuous Galerkin schemes
KW - Finite signal speeds of all physical processes
KW - Nonlinear hyperelasticity
KW - Path-conservative methods and stiff source terms
KW - Symmetric hyperbolic thermodynamically compatible systems (SHTC)
KW - Unified first order hyperbolic model of continuum physics (fluid mechanics, solid mechanics, electro-dynamics)
KW - Galerkin schemes
KW - GENERALIZED RIEMANN PROBLEM
KW - TANG VORTEX SYSTEM
KW - ADAPTIVE MESH REFINEMENT
KW - DISCONTINUOUS GALERKIN METHOD
KW - DIFFUSION-REACTION EQUATIONS
KW - Arbitrary high-order ADER Discontinuous
KW - HIGH-VELOCITY IMPACT
KW - KELVIN-HELMHOLTZ INSTABILITY
KW - STIFF RELAXATION TERMS
KW - CONSERVATION-LAWS
KW - FINITE-VOLUME SCHEMES
UR - http://www.scopus.com/inward/record.url?scp=85026425019&partnerID=8YFLogxK
U2 - 10.1016/j.jcp.2017.07.020
DO - 10.1016/j.jcp.2017.07.020
M3 - Article
AN - SCOPUS:85026425019
VL - 348
SP - 298
EP - 342
JO - Journal of Computational Physics
JF - Journal of Computational Physics
SN - 0021-9991
ER -
ID: 9952700