Standard

Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory. / Bykov, D. O.; Grebenev, V. N.; Medvedev, S. B.

Nonlinear Physical Science. ed. / Albert C. J. Luo; Rafail K. Gazizov. 1. ed. Springer Science and Business Media Deutschland GmbH, 2021. p. 99-123 (Nonlinear Physical Science).

Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

Harvard

Bykov, DO, Grebenev, VN & Medvedev, SB 2021, Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory. in ACJ Luo & RK Gazizov (eds), Nonlinear Physical Science. 1 edn, Nonlinear Physical Science, Springer Science and Business Media Deutschland GmbH, pp. 99-123. https://doi.org/10.1007/978-981-16-4683-6_3

APA

Bykov, D. O., Grebenev, V. N., & Medvedev, S. B. (2021). Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory. In A. C. J. Luo, & R. K. Gazizov (Eds.), Nonlinear Physical Science (1 ed., pp. 99-123). (Nonlinear Physical Science). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-16-4683-6_3

Vancouver

Bykov DO, Grebenev VN, Medvedev SB. Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory. In Luo ACJ, Gazizov RK, editors, Nonlinear Physical Science. 1 ed. Springer Science and Business Media Deutschland GmbH. 2021. p. 99-123. (Nonlinear Physical Science). doi: 10.1007/978-981-16-4683-6_3

Author

Bykov, D. O. ; Grebenev, V. N. ; Medvedev, S. B. / Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory. Nonlinear Physical Science. editor / Albert C. J. Luo ; Rafail K. Gazizov. 1. ed. Springer Science and Business Media Deutschland GmbH, 2021. pp. 99-123 (Nonlinear Physical Science).

BibTeX

@inbook{82b7215081a047bc894e8a3cf32a838e,
title = "Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory",
abstract = "This is a continuation of the paper [5] wherein the Hamiltonian structure together with the non-canonical singular Poisson bracket and Casimir functionals were established for two-dimensional linear elasticity model. The aim of the present work is the extension of the above-mentioned results to the three-dimension case.",
author = "Bykov, {D. O.} and Grebenev, {V. N.} and Medvedev, {S. B.}",
note = "Bykov, D. O. Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory / D. O. Bykov, V. N. Grebenev, S. B. Medvedev // Nonlinear Physical Science. – 2021. – P. 99-123. Publisher Copyright: {\textcopyright} 2021, Higher Education Press.",
year = "2021",
doi = "10.1007/978-981-16-4683-6_3",
language = "English",
isbn = "978-981-16-4682-9",
series = "Nonlinear Physical Science",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "99--123",
editor = "Luo, {Albert C. J.} and Gazizov, {Rafail K.}",
booktitle = "Nonlinear Physical Science",
address = "Germany",
edition = "1",

}

RIS

TY - CHAP

T1 - Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory

AU - Bykov, D. O.

AU - Grebenev, V. N.

AU - Medvedev, S. B.

N1 - Bykov, D. O. Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory / D. O. Bykov, V. N. Grebenev, S. B. Medvedev // Nonlinear Physical Science. – 2021. – P. 99-123. Publisher Copyright: © 2021, Higher Education Press.

PY - 2021

Y1 - 2021

N2 - This is a continuation of the paper [5] wherein the Hamiltonian structure together with the non-canonical singular Poisson bracket and Casimir functionals were established for two-dimensional linear elasticity model. The aim of the present work is the extension of the above-mentioned results to the three-dimension case.

AB - This is a continuation of the paper [5] wherein the Hamiltonian structure together with the non-canonical singular Poisson bracket and Casimir functionals were established for two-dimensional linear elasticity model. The aim of the present work is the extension of the above-mentioned results to the three-dimension case.

UR - http://www.scopus.com/inward/record.url?scp=85121757063&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=47549282

UR - https://www.mendeley.com/catalogue/b9b8fb2c-fc95-34d4-90be-5014b67e4db4/

U2 - 10.1007/978-981-16-4683-6_3

DO - 10.1007/978-981-16-4683-6_3

M3 - Chapter

AN - SCOPUS:85121757063

SN - 978-981-16-4682-9

SN - 978-981-16-4685-0

T3 - Nonlinear Physical Science

SP - 99

EP - 123

BT - Nonlinear Physical Science

A2 - Luo, Albert C. J.

A2 - Gazizov, Rafail K.

PB - Springer Science and Business Media Deutschland GmbH

ER -

ID: 35197003