Standard

Group Bijections Commuting with Inner Automorphisms. / Borodin, A. N.; Neshchadim, M. V.; Simonov, A. A.

In: Siberian Mathematical Journal, Vol. 65, No. 5, 09.2024, p. 1015-1025.

Research output: Contribution to journalArticlepeer-review

Harvard

Borodin, AN, Neshchadim, MV & Simonov, AA 2024, 'Group Bijections Commuting with Inner Automorphisms', Siberian Mathematical Journal, vol. 65, no. 5, pp. 1015-1025. https://doi.org/10.1134/S0037446624050045

APA

Vancouver

Borodin AN, Neshchadim MV, Simonov AA. Group Bijections Commuting with Inner Automorphisms. Siberian Mathematical Journal. 2024 Sept;65(5):1015-1025. doi: 10.1134/S0037446624050045

Author

Borodin, A. N. ; Neshchadim, M. V. ; Simonov, A. A. / Group Bijections Commuting with Inner Automorphisms. In: Siberian Mathematical Journal. 2024 ; Vol. 65, No. 5. pp. 1015-1025.

BibTeX

@article{fc104cde802b4f0caa6c8142375df29e,
title = "Group Bijections Commuting with Inner Automorphisms",
abstract = "Considering the bijections of an arbitrary group onto itselfwhich commute with all inner automorphisms, we establish the general properties.In particular, the automorphisms constitute the group that includes the group of central automorphisms.Also, we fully describe for the dihedral groups, with.",
keywords = "512.543.56, automorphism, bijection, conjugacy class, group, inversion, quandle, wreath product",
author = "Borodin, {A. N.} and Neshchadim, {M. V.} and Simonov, {A. A.}",
year = "2024",
month = sep,
doi = "10.1134/S0037446624050045",
language = "English",
volume = "65",
pages = "1015--1025",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "5",

}

RIS

TY - JOUR

T1 - Group Bijections Commuting with Inner Automorphisms

AU - Borodin, A. N.

AU - Neshchadim, M. V.

AU - Simonov, A. A.

PY - 2024/9

Y1 - 2024/9

N2 - Considering the bijections of an arbitrary group onto itselfwhich commute with all inner automorphisms, we establish the general properties.In particular, the automorphisms constitute the group that includes the group of central automorphisms.Also, we fully describe for the dihedral groups, with.

AB - Considering the bijections of an arbitrary group onto itselfwhich commute with all inner automorphisms, we establish the general properties.In particular, the automorphisms constitute the group that includes the group of central automorphisms.Also, we fully describe for the dihedral groups, with.

KW - 512.543.56

KW - automorphism

KW - bijection

KW - conjugacy class

KW - group

KW - inversion

KW - quandle

KW - wreath product

UR - https://www.mendeley.com/catalogue/15ca5fe5-3cbb-3343-a7ba-280838486862/

U2 - 10.1134/S0037446624050045

DO - 10.1134/S0037446624050045

M3 - Article

VL - 65

SP - 1015

EP - 1025

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 5

ER -

ID: 60797497