Research output: Contribution to journal › Article › peer-review
Greedy cycles in the star graphs. / Gostevsky, Dmitriy Aleksandrovich; Konstantinova, Elena Valentinovna.
In: Сибирские электронные математические известия, Vol. 15, 01.01.2018, p. 205-213.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Greedy cycles in the star graphs
AU - Gostevsky, Dmitriy Aleksandrovich
AU - Konstantinova, Elena Valentinovna
N1 - Publisher Copyright: © 2018 Sobolev Institute of Mathematics. Copyright: Copyright 2019 Elsevier B.V., All rights reserved. Publisher Copyright: © 2018 Sobolev Institute of Mathematics.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - We apply the greedy approach to construct greedy cycles in Star graphs Sn, n ≥ 3, defined as Cayley graphs on the symmetric group Symn with generating set t = [(1 i), 2 ≤ i ≤ n] of transpositions. We define greedy sequences presented by distinct elements from t, and prove that any greedy sequence of length k, 2 ≤ k ≤ n - 1, forms a greedy cycle of length 2 · 3k-1. Based on these greedy sequences we give a construction of a maximal set of independent greedy cycles in the Star graphs Sn for any n ≥ 3.
AB - We apply the greedy approach to construct greedy cycles in Star graphs Sn, n ≥ 3, defined as Cayley graphs on the symmetric group Symn with generating set t = [(1 i), 2 ≤ i ≤ n] of transpositions. We define greedy sequences presented by distinct elements from t, and prove that any greedy sequence of length k, 2 ≤ k ≤ n - 1, forms a greedy cycle of length 2 · 3k-1. Based on these greedy sequences we give a construction of a maximal set of independent greedy cycles in the Star graphs Sn for any n ≥ 3.
KW - Cayley graph
KW - Greedy cycle
KW - Greedy sequence
KW - Star graph
KW - greedy sequence
KW - greedy cycle
UR - http://www.scopus.com/inward/record.url?scp=85070231280&partnerID=8YFLogxK
U2 - 10.17377/semi.2018.15.020
DO - 10.17377/semi.2018.15.020
M3 - Article
AN - SCOPUS:85070231280
VL - 15
SP - 205
EP - 213
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 22344993