Standard

Greedy cycles in the star graphs. / Gostevsky, Dmitriy Aleksandrovich; Konstantinova, Elena Valentinovna.

In: Сибирские электронные математические известия, Vol. 15, 01.01.2018, p. 205-213.

Research output: Contribution to journalArticlepeer-review

Harvard

Gostevsky, DA & Konstantinova, EV 2018, 'Greedy cycles in the star graphs', Сибирские электронные математические известия, vol. 15, pp. 205-213. https://doi.org/10.17377/semi.2018.15.020

APA

Gostevsky, D. A., & Konstantinova, E. V. (2018). Greedy cycles in the star graphs. Сибирские электронные математические известия, 15, 205-213. https://doi.org/10.17377/semi.2018.15.020

Vancouver

Gostevsky DA, Konstantinova EV. Greedy cycles in the star graphs. Сибирские электронные математические известия. 2018 Jan 1;15:205-213. doi: 10.17377/semi.2018.15.020

Author

Gostevsky, Dmitriy Aleksandrovich ; Konstantinova, Elena Valentinovna. / Greedy cycles in the star graphs. In: Сибирские электронные математические известия. 2018 ; Vol. 15. pp. 205-213.

BibTeX

@article{cfc6c00863884c70a35f8986d219f40c,
title = "Greedy cycles in the star graphs",
abstract = "We apply the greedy approach to construct greedy cycles in Star graphs Sn, n ≥ 3, defined as Cayley graphs on the symmetric group Symn with generating set t = [(1 i), 2 ≤ i ≤ n] of transpositions. We define greedy sequences presented by distinct elements from t, and prove that any greedy sequence of length k, 2 ≤ k ≤ n - 1, forms a greedy cycle of length 2 · 3k-1. Based on these greedy sequences we give a construction of a maximal set of independent greedy cycles in the Star graphs Sn for any n ≥ 3.",
keywords = "Cayley graph, Greedy cycle, Greedy sequence, Star graph, greedy sequence, greedy cycle",
author = "Gostevsky, {Dmitriy Aleksandrovich} and Konstantinova, {Elena Valentinovna}",
note = "Publisher Copyright: {\textcopyright} 2018 Sobolev Institute of Mathematics. Copyright: Copyright 2019 Elsevier B.V., All rights reserved. Publisher Copyright: {\textcopyright} 2018 Sobolev Institute of Mathematics.",
year = "2018",
month = jan,
day = "1",
doi = "10.17377/semi.2018.15.020",
language = "English",
volume = "15",
pages = "205--213",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Greedy cycles in the star graphs

AU - Gostevsky, Dmitriy Aleksandrovich

AU - Konstantinova, Elena Valentinovna

N1 - Publisher Copyright: © 2018 Sobolev Institute of Mathematics. Copyright: Copyright 2019 Elsevier B.V., All rights reserved. Publisher Copyright: © 2018 Sobolev Institute of Mathematics.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We apply the greedy approach to construct greedy cycles in Star graphs Sn, n ≥ 3, defined as Cayley graphs on the symmetric group Symn with generating set t = [(1 i), 2 ≤ i ≤ n] of transpositions. We define greedy sequences presented by distinct elements from t, and prove that any greedy sequence of length k, 2 ≤ k ≤ n - 1, forms a greedy cycle of length 2 · 3k-1. Based on these greedy sequences we give a construction of a maximal set of independent greedy cycles in the Star graphs Sn for any n ≥ 3.

AB - We apply the greedy approach to construct greedy cycles in Star graphs Sn, n ≥ 3, defined as Cayley graphs on the symmetric group Symn with generating set t = [(1 i), 2 ≤ i ≤ n] of transpositions. We define greedy sequences presented by distinct elements from t, and prove that any greedy sequence of length k, 2 ≤ k ≤ n - 1, forms a greedy cycle of length 2 · 3k-1. Based on these greedy sequences we give a construction of a maximal set of independent greedy cycles in the Star graphs Sn for any n ≥ 3.

KW - Cayley graph

KW - Greedy cycle

KW - Greedy sequence

KW - Star graph

KW - greedy sequence

KW - greedy cycle

UR - http://www.scopus.com/inward/record.url?scp=85070231280&partnerID=8YFLogxK

U2 - 10.17377/semi.2018.15.020

DO - 10.17377/semi.2018.15.020

M3 - Article

AN - SCOPUS:85070231280

VL - 15

SP - 205

EP - 213

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 22344993