Standard

Graphs of Nonsmooth Contact Mappings on Carnot Groups with Sub-Lorentzian Structure. / Karmanova, M. B.

In: Doklady Mathematics, Vol. 99, No. 3, 01.05.2019, p. 282-285.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Karmanova MB. Graphs of Nonsmooth Contact Mappings on Carnot Groups with Sub-Lorentzian Structure. Doklady Mathematics. 2019 May 1;99(3):282-285. doi: 10.1134/S1064562419030104

Author

Karmanova, M. B. / Graphs of Nonsmooth Contact Mappings on Carnot Groups with Sub-Lorentzian Structure. In: Doklady Mathematics. 2019 ; Vol. 99, No. 3. pp. 282-285.

BibTeX

@article{0eb47f2422cb4943a2b3dba41284216e,
title = "Graphs of Nonsmooth Contact Mappings on Carnot Groups with Sub-Lorentzian Structure",
abstract = "For classes of graph mappings constructed from CH 1-mappings of nilpotent graded groups, we prove an area formula on sub-Lorentzian structures of arbitrary depth with multidimensional time.",
keywords = "HOLDER MAPPINGS, DIFFERENTIABILITY",
author = "Karmanova, {M. B.}",
note = "Publisher Copyright: {\textcopyright} 2019, Pleiades Publishing, Ltd.",
year = "2019",
month = may,
day = "1",
doi = "10.1134/S1064562419030104",
language = "English",
volume = "99",
pages = "282--285",
journal = "Doklady Mathematics",
issn = "1064-5624",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "3",

}

RIS

TY - JOUR

T1 - Graphs of Nonsmooth Contact Mappings on Carnot Groups with Sub-Lorentzian Structure

AU - Karmanova, M. B.

N1 - Publisher Copyright: © 2019, Pleiades Publishing, Ltd.

PY - 2019/5/1

Y1 - 2019/5/1

N2 - For classes of graph mappings constructed from CH 1-mappings of nilpotent graded groups, we prove an area formula on sub-Lorentzian structures of arbitrary depth with multidimensional time.

AB - For classes of graph mappings constructed from CH 1-mappings of nilpotent graded groups, we prove an area formula on sub-Lorentzian structures of arbitrary depth with multidimensional time.

KW - HOLDER MAPPINGS

KW - DIFFERENTIABILITY

UR - http://www.scopus.com/inward/record.url?scp=85069993440&partnerID=8YFLogxK

U2 - 10.1134/S1064562419030104

DO - 10.1134/S1064562419030104

M3 - Article

AN - SCOPUS:85069993440

VL - 99

SP - 282

EP - 285

JO - Doklady Mathematics

JF - Doklady Mathematics

SN - 1064-5624

IS - 3

ER -

ID: 21138580