Research output: Contribution to journal › Article › peer-review
Global Unique Solvability of the Initial-Boundary Value Problem for the Equations of One-Dimensional Polytropic Flows of Viscous Compressible Multifluids. / Mamontov, Alexander E.; Prokudin, Dmitry A.
In: Journal of Mathematical Fluid Mechanics, Vol. 21, No. 1, 9, 01.03.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Global Unique Solvability of the Initial-Boundary Value Problem for the Equations of One-Dimensional Polytropic Flows of Viscous Compressible Multifluids
AU - Mamontov, Alexander E.
AU - Prokudin, Dmitry A.
N1 - Publisher Copyright: © 2019, Springer Nature Switzerland AG.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - We consider the equations which describe polytropic one-dimensional flows of viscous compressible multifluids. We prove global existence and uniqueness of a solution to the initial-boundary value problem which corresponds to the flow in a bounded space domain.
AB - We consider the equations which describe polytropic one-dimensional flows of viscous compressible multifluids. We prove global existence and uniqueness of a solution to the initial-boundary value problem which corresponds to the flow in a bounded space domain.
KW - Global existence
KW - Initial-boundary value problem
KW - Multifluid
KW - Polytropic flow
KW - Uniqueness
KW - Viscous compressible flow
KW - EXISTENCE
KW - SYSTEM
KW - Secondary 76T99
KW - MULTI-FLUIDS
KW - SOLUBILITY
KW - MIXTURES
KW - Primary 76N10
KW - MOTION
UR - http://www.scopus.com/inward/record.url?scp=85061695934&partnerID=8YFLogxK
U2 - 10.1007/s00021-019-0416-7
DO - 10.1007/s00021-019-0416-7
M3 - Article
AN - SCOPUS:85061695934
VL - 21
JO - Journal of Mathematical Fluid Mechanics
JF - Journal of Mathematical Fluid Mechanics
SN - 1422-6928
IS - 1
M1 - 9
ER -
ID: 18561530