Standard

Genuinely nonlinear forward-backward ultra-parabolic equations. / Kuznetsov, Ivan V.

In: Сибирские электронные математические известия, Vol. 14, 01.01.2017, p. 710-731.

Research output: Contribution to journalArticlepeer-review

Harvard

Kuznetsov, IV 2017, 'Genuinely nonlinear forward-backward ultra-parabolic equations', Сибирские электронные математические известия, vol. 14, pp. 710-731. https://doi.org/10.17377/semi.2017.14.061

APA

Kuznetsov, I. V. (2017). Genuinely nonlinear forward-backward ultra-parabolic equations. Сибирские электронные математические известия, 14, 710-731. https://doi.org/10.17377/semi.2017.14.061

Vancouver

Kuznetsov IV. Genuinely nonlinear forward-backward ultra-parabolic equations. Сибирские электронные математические известия. 2017 Jan 1;14:710-731. doi: 10.17377/semi.2017.14.061

Author

Kuznetsov, Ivan V. / Genuinely nonlinear forward-backward ultra-parabolic equations. In: Сибирские электронные математические известия. 2017 ; Vol. 14. pp. 710-731.

BibTeX

@article{3ac681148e6f4fad902395d1c6e14e7e,
title = "Genuinely nonlinear forward-backward ultra-parabolic equations",
abstract = "In this paper we have proved the existence and uniqueness of entropy solutions to the Dirichlet problem for genuinely nonlinear forward-backward ultra-parabolic equations. We have used a kinetic formulation of entropy solutions which enables also to prove the existence of their traces in the L1 sense.",
keywords = "Entropy solution, Forward-backward ultra-parabolic equation, Kinetic formulation",
author = "Kuznetsov, {Ivan V.}",
year = "2017",
month = jan,
day = "1",
doi = "10.17377/semi.2017.14.061",
language = "English",
volume = "14",
pages = "710--731",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Genuinely nonlinear forward-backward ultra-parabolic equations

AU - Kuznetsov, Ivan V.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - In this paper we have proved the existence and uniqueness of entropy solutions to the Dirichlet problem for genuinely nonlinear forward-backward ultra-parabolic equations. We have used a kinetic formulation of entropy solutions which enables also to prove the existence of their traces in the L1 sense.

AB - In this paper we have proved the existence and uniqueness of entropy solutions to the Dirichlet problem for genuinely nonlinear forward-backward ultra-parabolic equations. We have used a kinetic formulation of entropy solutions which enables also to prove the existence of their traces in the L1 sense.

KW - Entropy solution

KW - Forward-backward ultra-parabolic equation

KW - Kinetic formulation

UR - http://www.scopus.com/inward/record.url?scp=85033213255&partnerID=8YFLogxK

U2 - 10.17377/semi.2017.14.061

DO - 10.17377/semi.2017.14.061

M3 - Article

AN - SCOPUS:85033213255

VL - 14

SP - 710

EP - 731

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 22318354