Research output: Contribution to journal › Conference article › peer-review
Gamma/Hadron Separation for a Ground Based IACT in Experiment TAIGA Using Random Forest Machine Learning Methods. / the TAIGA Collaboration.
In: Proceedings of Science, Vol. 410, 008, 12.01.2022.Research output: Contribution to journal › Conference article › peer-review
}
TY - JOUR
T1 - Gamma/Hadron Separation for a Ground Based IACT in Experiment TAIGA Using Random Forest Machine Learning Methods
AU - the TAIGA Collaboration
AU - Vasyutina, Maria
AU - Sveshnikova, Lyubov
AU - Astapov, I. I.
AU - Bezyazeekov, P. A.
AU - Blank, M.
AU - Bonvech, E. A.
AU - Borodin, A. N.
AU - Brueckner, M.
AU - Budnev, N. M.
AU - Bulan, A. V.
AU - Chernov, D. V.
AU - Chiavassa, A.
AU - Dyachok, A. N.
AU - Gafarov, A. R.
AU - Garmash, A. Yu
AU - Grebenyuk, V. M.
AU - Gress, O. A.
AU - Gress, T. I.
AU - Grinyuk, A. A.
AU - Grishin, O. G.
AU - Horns, D.
AU - Ivanova, A. L.
AU - Kalmykov, N. N.
AU - Kindin, V. V.
AU - Kiryuhin, S. N.
AU - Kokoulin, R. P.
AU - Kompaniets, K. G.
AU - Korosteleva, E. E.
AU - Kozhin, V. A.
AU - Kravchenko, E. A.
AU - Kryukov, A. P.
AU - Kuzmichev, L. A.
AU - Lagutin, A. A.
AU - Lavrova, M. V.
AU - Lemeshev, Yu
AU - Lubsandorzhiev, B. K.
AU - Lubsandorzhiev, N. B.
AU - Lukanov, A. D.
AU - Lukyantsev, D.
AU - Mirgazov, R. R.
AU - Mirzoyan, R.
AU - Monkhoev, R. D.
AU - Osipova, E. A.
AU - Pakhorukov, A. L.
AU - Panasenko, L. A.
AU - Pan, A.
AU - Pankov, L. V.
AU - Rubtsov, G. I.
AU - Sokolov, A. V.
AU - Vaidyanathan, A.
N1 - Funding Information: The work was performed at the unique scientific installation "Astrophysical Complex of MSU-ISU"(agreement 13.UNU.21.0007). This work also is supported by the Russian Science Foundation grant N 19-72-20067. Publisher Copyright: © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
PY - 2022/1/12
Y1 - 2022/1/12
N2 - In this paper we present the first attempt of adaptation the Random Forest (RF) machine learning algorithm to gamma/hadron separation in the TAIGA experiment (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy). The TAIGA experiment will include HiSCORE array with 120 wide-angle Cherenkov detectors on the area of 1 km2 and 5 Imaging Atmospheric Cherenkov Telescopes (IACT) on the same area. At the first stage of the analysis, only images obtained by one IACT were included in consideration. The training process occurs on samples of parameterized images obtained from Monte Carlo (MC) data for gammas and hadrons with a ‘Scaled Hillas Parameters’ standard technique. It was shown that the program effectively separates gamma-like showers, RF method does produce stable results and is robust with respect to input parameters and provides a simple control and setup of the procedure for extracting showers from gamma rays.
AB - In this paper we present the first attempt of adaptation the Random Forest (RF) machine learning algorithm to gamma/hadron separation in the TAIGA experiment (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy). The TAIGA experiment will include HiSCORE array with 120 wide-angle Cherenkov detectors on the area of 1 km2 and 5 Imaging Atmospheric Cherenkov Telescopes (IACT) on the same area. At the first stage of the analysis, only images obtained by one IACT were included in consideration. The training process occurs on samples of parameterized images obtained from Monte Carlo (MC) data for gammas and hadrons with a ‘Scaled Hillas Parameters’ standard technique. It was shown that the program effectively separates gamma-like showers, RF method does produce stable results and is robust with respect to input parameters and provides a simple control and setup of the procedure for extracting showers from gamma rays.
UR - http://www.scopus.com/inward/record.url?scp=85124072310&partnerID=8YFLogxK
U2 - 10.22323/1.410.0008
DO - 10.22323/1.410.0008
M3 - Conference article
AN - SCOPUS:85124072310
VL - 410
JO - Proceedings of Science
JF - Proceedings of Science
SN - 1824-8039
M1 - 008
T2 - 5th International Workshop on Deep Learning in Computational Physics, DLCP 2021
Y2 - 28 June 2021 through 29 June 2021
ER -
ID: 35427209