Standard

Friedberg numberings of families of partial computable functionals. / Ospichev, Sergey.

In: Сибирские электронные математические известия, Vol. 16, 01.01.2019, p. 331-339.

Research output: Contribution to journalArticlepeer-review

Harvard

Ospichev, S 2019, 'Friedberg numberings of families of partial computable functionals', Сибирские электронные математические известия, vol. 16, pp. 331-339. https://doi.org/10.33048/semi.2019.16.020

APA

Ospichev, S. (2019). Friedberg numberings of families of partial computable functionals. Сибирские электронные математические известия, 16, 331-339. https://doi.org/10.33048/semi.2019.16.020

Vancouver

Ospichev S. Friedberg numberings of families of partial computable functionals. Сибирские электронные математические известия. 2019 Jan 1;16:331-339. doi: 10.33048/semi.2019.16.020

Author

Ospichev, Sergey. / Friedberg numberings of families of partial computable functionals. In: Сибирские электронные математические известия. 2019 ; Vol. 16. pp. 331-339.

BibTeX

@article{ad4c385c599a4b0a88d2a85c8cdb3c6d,
title = "Friedberg numberings of families of partial computable functionals",
abstract = "We consider computable numberings of families of partial computable functionals of finite types. We show, that if a family of all partial computable functionals of type 0 has a computable friedberg numbering, then family of all partial computable functionals of any given type also has computable friedberg numbering. Furthermore, for a type σ | τ there are infinitely many nonequivalent computable minimal nonpositive, positive nondecidable and friedberg numberings.",
keywords = "Computable morphisms, Computable numberings, Friedberg numbering, Minimal numbering, Partial computable functionals, Positive numbering, Rogers semilattice, partial computable functionals, computable morphisms, computable numberings, Rogers semilattice, minimal numbering, positive numbering, friedberg numbering",
author = "Sergey Ospichev",
year = "2019",
month = jan,
day = "1",
doi = "10.33048/semi.2019.16.020",
language = "English",
volume = "16",
pages = "331--339",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Friedberg numberings of families of partial computable functionals

AU - Ospichev, Sergey

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We consider computable numberings of families of partial computable functionals of finite types. We show, that if a family of all partial computable functionals of type 0 has a computable friedberg numbering, then family of all partial computable functionals of any given type also has computable friedberg numbering. Furthermore, for a type σ | τ there are infinitely many nonequivalent computable minimal nonpositive, positive nondecidable and friedberg numberings.

AB - We consider computable numberings of families of partial computable functionals of finite types. We show, that if a family of all partial computable functionals of type 0 has a computable friedberg numbering, then family of all partial computable functionals of any given type also has computable friedberg numbering. Furthermore, for a type σ | τ there are infinitely many nonequivalent computable minimal nonpositive, positive nondecidable and friedberg numberings.

KW - Computable morphisms

KW - Computable numberings

KW - Friedberg numbering

KW - Minimal numbering

KW - Partial computable functionals

KW - Positive numbering

KW - Rogers semilattice

KW - partial computable functionals

KW - computable morphisms

KW - computable numberings

KW - Rogers semilattice

KW - minimal numbering

KW - positive numbering

KW - friedberg numbering

UR - http://www.scopus.com/inward/record.url?scp=85066842368&partnerID=8YFLogxK

U2 - 10.33048/semi.2019.16.020

DO - 10.33048/semi.2019.16.020

M3 - Article

AN - SCOPUS:85066842368

VL - 16

SP - 331

EP - 339

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 20537774