Friedberg numberings of families of partial computable functionals. / Ospichev, Sergey.
In: Сибирские электронные математические известия, Vol. 16, 01.01.2019, p. 331-339.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Friedberg numberings of families of partial computable functionals
AU - Ospichev, Sergey
PY - 2019/1/1
Y1 - 2019/1/1
N2 - We consider computable numberings of families of partial computable functionals of finite types. We show, that if a family of all partial computable functionals of type 0 has a computable friedberg numbering, then family of all partial computable functionals of any given type also has computable friedberg numbering. Furthermore, for a type σ | τ there are infinitely many nonequivalent computable minimal nonpositive, positive nondecidable and friedberg numberings.
AB - We consider computable numberings of families of partial computable functionals of finite types. We show, that if a family of all partial computable functionals of type 0 has a computable friedberg numbering, then family of all partial computable functionals of any given type also has computable friedberg numbering. Furthermore, for a type σ | τ there are infinitely many nonequivalent computable minimal nonpositive, positive nondecidable and friedberg numberings.
KW - Computable morphisms
KW - Computable numberings
KW - Friedberg numbering
KW - Minimal numbering
KW - Partial computable functionals
KW - Positive numbering
KW - Rogers semilattice
KW - partial computable functionals
KW - computable morphisms
KW - computable numberings
KW - Rogers semilattice
KW - minimal numbering
KW - positive numbering
KW - friedberg numbering
UR - http://www.scopus.com/inward/record.url?scp=85066842368&partnerID=8YFLogxK
U2 - 10.33048/semi.2019.16.020
DO - 10.33048/semi.2019.16.020
M3 - Article
AN - SCOPUS:85066842368
VL - 16
SP - 331
EP - 339
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 20537774