Research output: Contribution to journal › Article › peer-review
Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal. / Kondrat'ev, Anatoly S.; Maslova, Natalia V.; Revin, Danila O.
In: Journal of Group Theory, Vol. 23, No. 6, 01.11.2020, p. 999-1016.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal
AU - Kondrat'ev, Anatoly S.
AU - Maslova, Natalia V.
AU - Revin, Danila O.
N1 - Publisher Copyright: © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - A subgroup H of a group G is said to be pronormal in G if H and H g are conjugate in 〈 H, H g〉 for every g ∈ G. In this paper, we determine the finite simple groups of type E 6 (q) and E 6 2 (q) in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.
AB - A subgroup H of a group G is said to be pronormal in G if H and H g are conjugate in 〈 H, H g〉 for every g ∈ G. In this paper, we determine the finite simple groups of type E 6 (q) and E 6 2 (q) in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.
UR - http://www.scopus.com/inward/record.url?scp=85089738679&partnerID=8YFLogxK
UR - https://apps.webofknowledge.com/InboundService.do?product=WOS&Func=Frame&DestFail=https%3A%2F%2Fwww.webofknowledge.com&SrcApp=RRC&locale=ru_RU&SrcAuth=RRC&SID=D52HcHFtW8QZW3ykdBs&customersID=RRC&mode=FullRecord&IsProductCode=Yes&Init=Yes&action=retrieve&UT=WOS%3A000584457400006
U2 - 10.1515/jgth-2020-0072
DO - 10.1515/jgth-2020-0072
M3 - Article
AN - SCOPUS:85089738679
VL - 23
SP - 999
EP - 1016
JO - Journal of Group Theory
JF - Journal of Group Theory
SN - 1433-5883
IS - 6
ER -
ID: 25311781