Standard

Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal. / Kondrat'ev, Anatoly S.; Maslova, Natalia V.; Revin, Danila O.

In: Journal of Group Theory, Vol. 23, No. 6, 01.11.2020, p. 999-1016.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Kondrat'ev AS, Maslova NV, Revin DO. Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal. Journal of Group Theory. 2020 Nov 1;23(6):999-1016. Epub 2020 Aug 6. doi: 10.1515/jgth-2020-0072

Author

Kondrat'ev, Anatoly S. ; Maslova, Natalia V. ; Revin, Danila O. / Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal. In: Journal of Group Theory. 2020 ; Vol. 23, No. 6. pp. 999-1016.

BibTeX

@article{6f994b284d0e4d85979f34822b1ed3ee,
title = "Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal",
abstract = "A subgroup H of a group G is said to be pronormal in G if H and H g are conjugate in 〈 H, H g〉 for every g ∈ G. In this paper, we determine the finite simple groups of type E 6 (q) and E 6 2 (q) in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.",
author = "Kondrat'ev, {Anatoly S.} and Maslova, {Natalia V.} and Revin, {Danila O.}",
note = "Publisher Copyright: {\textcopyright} 2020 Walter de Gruyter GmbH, Berlin/Boston 2020. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = nov,
day = "1",
doi = "10.1515/jgth-2020-0072",
language = "English",
volume = "23",
pages = "999--1016",
journal = "Journal of Group Theory",
issn = "1433-5883",
publisher = "Walter de Gruyter GmbH",
number = "6",

}

RIS

TY - JOUR

T1 - Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal

AU - Kondrat'ev, Anatoly S.

AU - Maslova, Natalia V.

AU - Revin, Danila O.

N1 - Publisher Copyright: © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/11/1

Y1 - 2020/11/1

N2 - A subgroup H of a group G is said to be pronormal in G if H and H g are conjugate in 〈 H, H g〉 for every g ∈ G. In this paper, we determine the finite simple groups of type E 6 (q) and E 6 2 (q) in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.

AB - A subgroup H of a group G is said to be pronormal in G if H and H g are conjugate in 〈 H, H g〉 for every g ∈ G. In this paper, we determine the finite simple groups of type E 6 (q) and E 6 2 (q) in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.

UR - http://www.scopus.com/inward/record.url?scp=85089738679&partnerID=8YFLogxK

UR - https://apps.webofknowledge.com/InboundService.do?product=WOS&Func=Frame&DestFail=https%3A%2F%2Fwww.webofknowledge.com&SrcApp=RRC&locale=ru_RU&SrcAuth=RRC&SID=D52HcHFtW8QZW3ykdBs&customersID=RRC&mode=FullRecord&IsProductCode=Yes&Init=Yes&action=retrieve&UT=WOS%3A000584457400006

U2 - 10.1515/jgth-2020-0072

DO - 10.1515/jgth-2020-0072

M3 - Article

AN - SCOPUS:85089738679

VL - 23

SP - 999

EP - 1016

JO - Journal of Group Theory

JF - Journal of Group Theory

SN - 1433-5883

IS - 6

ER -

ID: 25311781