Standard

Finite Groups Close to Frobenius Groups. / Wei, X.; Zhurtov, A. Kh; Lytkina, D. V. et al.

In: Siberian Mathematical Journal, Vol. 60, No. 5, 01.09.2019, p. 805-809.

Research output: Contribution to journalArticlepeer-review

Harvard

Wei, X, Zhurtov, AK, Lytkina, DV & Mazurov, VD 2019, 'Finite Groups Close to Frobenius Groups', Siberian Mathematical Journal, vol. 60, no. 5, pp. 805-809. https://doi.org/10.1134/S0037446619050045

APA

Wei, X., Zhurtov, A. K., Lytkina, D. V., & Mazurov, V. D. (2019). Finite Groups Close to Frobenius Groups. Siberian Mathematical Journal, 60(5), 805-809. https://doi.org/10.1134/S0037446619050045

Vancouver

Wei X, Zhurtov AK, Lytkina DV, Mazurov VD. Finite Groups Close to Frobenius Groups. Siberian Mathematical Journal. 2019 Sept 1;60(5):805-809. doi: 10.1134/S0037446619050045

Author

Wei, X. ; Zhurtov, A. Kh ; Lytkina, D. V. et al. / Finite Groups Close to Frobenius Groups. In: Siberian Mathematical Journal. 2019 ; Vol. 60, No. 5. pp. 805-809.

BibTeX

@article{787d033da59844eebe4027b6b4137e1e,
title = "Finite Groups Close to Frobenius Groups",
abstract = "We study finite nonsoluble generalized Frobenius groups; i.e., the groups G with a proper nontrivial normal subgroup F such that each coset Fx of prime order p, as an element of the quotient group G/F, consists only of p-elements. The particular example of such a group is a Frobenius group, given that F is the Frobenius kernel of G, and also the Camina group.",
keywords = "Camina group, complement, Frobenius group, generalized Frobenius group, kernel",
author = "X. Wei and Zhurtov, {A. Kh} and Lytkina, {D. V.} and Mazurov, {V. D.}",
year = "2019",
month = sep,
day = "1",
doi = "10.1134/S0037446619050045",
language = "English",
volume = "60",
pages = "805--809",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "5",

}

RIS

TY - JOUR

T1 - Finite Groups Close to Frobenius Groups

AU - Wei, X.

AU - Zhurtov, A. Kh

AU - Lytkina, D. V.

AU - Mazurov, V. D.

PY - 2019/9/1

Y1 - 2019/9/1

N2 - We study finite nonsoluble generalized Frobenius groups; i.e., the groups G with a proper nontrivial normal subgroup F such that each coset Fx of prime order p, as an element of the quotient group G/F, consists only of p-elements. The particular example of such a group is a Frobenius group, given that F is the Frobenius kernel of G, and also the Camina group.

AB - We study finite nonsoluble generalized Frobenius groups; i.e., the groups G with a proper nontrivial normal subgroup F such that each coset Fx of prime order p, as an element of the quotient group G/F, consists only of p-elements. The particular example of such a group is a Frobenius group, given that F is the Frobenius kernel of G, and also the Camina group.

KW - Camina group

KW - complement

KW - Frobenius group

KW - generalized Frobenius group

KW - kernel

UR - http://www.scopus.com/inward/record.url?scp=85073690298&partnerID=8YFLogxK

U2 - 10.1134/S0037446619050045

DO - 10.1134/S0037446619050045

M3 - Article

AN - SCOPUS:85073690298

VL - 60

SP - 805

EP - 809

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 5

ER -

ID: 21939104