Standard

Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm. / Mishchenko, Michael I.; Dlugach, Janna M.; Lock, James A. et al.

In: Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 217, 01.09.2018, p. 274-277.

Research output: Contribution to journalArticlepeer-review

Harvard

Mishchenko, MI, Dlugach, JM, Lock, JA & Yurkin, MA 2018, 'Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm', Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 217, pp. 274-277. https://doi.org/10.1016/j.jqsrt.2018.05.034

APA

Mishchenko, M. I., Dlugach, J. M., Lock, J. A., & Yurkin, M. A. (2018). Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 274-277. https://doi.org/10.1016/j.jqsrt.2018.05.034

Vancouver

Mishchenko MI, Dlugach JM, Lock JA, Yurkin MA. Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer. 2018 Sept 1;217:274-277. doi: 10.1016/j.jqsrt.2018.05.034

Author

Mishchenko, Michael I. ; Dlugach, Janna M. ; Lock, James A. et al. / Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm. In: Journal of Quantitative Spectroscopy and Radiative Transfer. 2018 ; Vol. 217. pp. 274-277.

BibTeX

@article{07653aeb725c401d848150b8e283e8c9,
title = "Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm",
abstract = "A recently developed FORTRAN program computing far-field optical observables for spherical particles in an absorbing medium has exhibited numerical instability arising when the product of the particle vacuum size parameter and the imaginary part of the refractive index of the host becomes sufficiently large. We offer a simple analytical explanation of this instability and propose a compact numerical algorithm for the stable computation of Lorenz–Mie coefficients based on an upward recursion formula for spherical Hankel functions of a complex argument. Extensive tests confirm an excellent accuracy of this algorithm approaching machine precision. The improved public-domain FORTRAN program is available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html.",
keywords = "Absorbing host medium, Far-field electromagnetic scattering, Lorenz–Mie theory, Spherical Hankel functions, Lorenz-Mie theory, EXTINCTION",
author = "Mishchenko, {Michael I.} and Dlugach, {Janna M.} and Lock, {James A.} and Yurkin, {Maxim A.}",
year = "2018",
month = sep,
day = "1",
doi = "10.1016/j.jqsrt.2018.05.034",
language = "English",
volume = "217",
pages = "274--277",
journal = "Journal of Quantitative Spectroscopy and Radiative Transfer",
issn = "0022-4073",
publisher = "Elsevier Ltd",

}

RIS

TY - JOUR

T1 - Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm

AU - Mishchenko, Michael I.

AU - Dlugach, Janna M.

AU - Lock, James A.

AU - Yurkin, Maxim A.

PY - 2018/9/1

Y1 - 2018/9/1

N2 - A recently developed FORTRAN program computing far-field optical observables for spherical particles in an absorbing medium has exhibited numerical instability arising when the product of the particle vacuum size parameter and the imaginary part of the refractive index of the host becomes sufficiently large. We offer a simple analytical explanation of this instability and propose a compact numerical algorithm for the stable computation of Lorenz–Mie coefficients based on an upward recursion formula for spherical Hankel functions of a complex argument. Extensive tests confirm an excellent accuracy of this algorithm approaching machine precision. The improved public-domain FORTRAN program is available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html.

AB - A recently developed FORTRAN program computing far-field optical observables for spherical particles in an absorbing medium has exhibited numerical instability arising when the product of the particle vacuum size parameter and the imaginary part of the refractive index of the host becomes sufficiently large. We offer a simple analytical explanation of this instability and propose a compact numerical algorithm for the stable computation of Lorenz–Mie coefficients based on an upward recursion formula for spherical Hankel functions of a complex argument. Extensive tests confirm an excellent accuracy of this algorithm approaching machine precision. The improved public-domain FORTRAN program is available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html.

KW - Absorbing host medium

KW - Far-field electromagnetic scattering

KW - Lorenz–Mie theory

KW - Spherical Hankel functions

KW - Lorenz-Mie theory

KW - EXTINCTION

UR - http://www.scopus.com/inward/record.url?scp=85048711560&partnerID=8YFLogxK

U2 - 10.1016/j.jqsrt.2018.05.034

DO - 10.1016/j.jqsrt.2018.05.034

M3 - Article

C2 - 30344341

AN - SCOPUS:85048711560

VL - 217

SP - 274

EP - 277

JO - Journal of Quantitative Spectroscopy and Radiative Transfer

JF - Journal of Quantitative Spectroscopy and Radiative Transfer

SN - 0022-4073

ER -

ID: 14048098