Research output: Contribution to journal › Article › peer-review
Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch. / (AWAKE Collaboration) ; Каргаполов, Иван Юрьевич; Петренко, Алексей Васильевич.
In: Physical Review Accelerators and Beams, Vol. 24, No. 1, 011301, 05.01.2021.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch
AU - (AWAKE Collaboration)
AU - Chappell, J.
AU - Adli, E.
AU - Agnello, R.
AU - Aladi, M.
AU - Andrebe, Y.
AU - Apsimon, O.
AU - Apsimon, R.
AU - Bachmann, A. M.
AU - Baistrukov, M. A.
AU - Batsch, F.
AU - Bergamaschi, M.
AU - Blanchard, P.
AU - Burrows, P. N.
AU - Buttenschön, B.
AU - Caldwell, A.
AU - Chevallay, E.
AU - Chung, M.
AU - Cooke, D. A.
AU - Damerau, H.
AU - Davut, C.
AU - Demeter, G.
AU - Deubner, L. H.
AU - Dexter, A.
AU - Djotyan, G. P.
AU - Doebert, S.
AU - Farmer, J.
AU - Fasoli, A.
AU - Fedosseev, V. N.
AU - Fiorito, R.
AU - Fonseca, R. A.
AU - Friebel, F.
AU - Furno, I.
AU - Garolfi, L.
AU - Gessner, S.
AU - Goddard, B.
AU - Gorgisyan, I.
AU - Gorn, A. A.
AU - Granados, E.
AU - Granetzny, M.
AU - Grulke, O.
AU - Gschwendtner, E.
AU - Hafych, V.
AU - Hartin, A.
AU - Helm, A.
AU - Henderson, J. R.
AU - Howling, A.
AU - Lotov, K. V.
AU - Minakov, V. A.
AU - Spitsyn, R. I.
AU - Tuev, P. V.
AU - Каргаполов, Иван Юрьевич
AU - Петренко, Алексей Васильевич
N1 - Funding Information: This work was supported in parts by a Leverhulme Trust Research Project Grant No. RPG-2017-143 and by STFC (AWAKE-UK, Cockcroft Institute core, John Adams Institute core, and UCL consolidated grants), United Kingdom; a Deutsche Forschungsgemeinschaft project Grant No. PU 213-6/1 “Three-dimensional quasi-static simulations of beam self-modulation for plasma wakefield acceleration”; the National Research Foundation of Korea (No. NRF-2016R1A5A1013277 and No. NRF-2019R1F1A1062377); the Portuguese FCT—Foundation for Science and Technology, through Grants No. CERN/FIS-TEC/0032/2017, No. PTDC-FIS-PLA-2940-2014, No. UID/FIS/50010/2013 and No. SFRH/IF/01635/2015; NSERC and Conseil national de recherches Canada for TRIUMF’s contribution; the Research Council of Norway; the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (Grant No. 05E15CHA); and the U.S. National Science Foundation under Grant No. PHY-1903316. M. Wing acknowledges the support of the Alexander von Humboldt Stiftung and DESY, Hamburg. Contribution of the Novosibirsk team was supported by the Russian Science Foundation, Project No. 20-12-00062. Support of the Wigner Datacenter Cloud facility through the “Awakelaser” project is acknowledged. The work of V. Hafych has been supported by the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014–2020) under the Marie Skłodowska-Curie Grant Agreement No. 765710. The authors acknowledge the use of the UCL Myriad and Grace High Performance Computing Facilities (Myriad@UCL, Grace@UCL), and associated support services, in the completion of this work. The AWAKE collaboration acknowledge the SPS team for their excellent proton delivery. Publisher Copyright: © 2021 authors. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/1/5
Y1 - 2021/1/5
N2 - Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron injection delay scans.
AB - Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron injection delay scans.
UR - http://www.scopus.com/inward/record.url?scp=85099634754&partnerID=8YFLogxK
U2 - 10.1103/PhysRevAccelBeams.24.011301
DO - 10.1103/PhysRevAccelBeams.24.011301
M3 - Article
AN - SCOPUS:85099634754
VL - 24
JO - Physical Review Accelerators and Beams
JF - Physical Review Accelerators and Beams
SN - 2469-9888
IS - 1
M1 - 011301
ER -
ID: 27527091