Evolution history of the Neoproterozoic eclogite-bearing complex of the Muya dome (Central Asian Orogenic Belt) : Constraints from zircon U-Pb age, Hf and whole-rock Nd isotopes. / Shatsky, V. S.; Malkovets, V. G.; Belousova, E. A. et al.
In: Precambrian Research, Vol. 261, 01.05.2015, p. 1-11.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Evolution history of the Neoproterozoic eclogite-bearing complex of the Muya dome (Central Asian Orogenic Belt)
T2 - Constraints from zircon U-Pb age, Hf and whole-rock Nd isotopes
AU - Shatsky, V. S.
AU - Malkovets, V. G.
AU - Belousova, E. A.
AU - Skuzovatov, S. Yu
PY - 2015/5/1
Y1 - 2015/5/1
N2 - U-Pb dating and Hf-isotope analysis of zircons and whole-rock Nd-isotope analyses were carried out on country rocks of the eclogite-gneiss complex of the North Muya dome in the Anamakit-Muya zone of the Baikal Muya accretionary fold belt. Zircons from garnet-biotite gneisses (Qtz+Kfsp+Pl+Bt+Grt) and garnet-biotite-muscovite schist (Pl+Kfsp+Bt+Mu+Grt+Qtz) were dated using the LA-ICP-MS technique. Based on U-Pb isotope data and CL images zircon grains were divided into three groups: detrital, magmatic and metamorphic zircons. Metamorphic zircons display no zoning or the cloudy zoning. The grains morphology together with the well-developed oscillatory zoning clearly identifies the igneous origin of magmatic zircons. The metamorphic zircons (ages 576-680Ma) have Th/U ratios varying from 0.271 to 0.004, whereas the ratio in magmatic zircons ranges from 0.779 to 0.11. Magmatic zircons from granite-gneisses of the North Muya dome exhibit a relatively narrow spread in the crystallization age with the major peak at ca 764Ma. Younger ages are interpreted as due to the partial resetting of U-Pb system during the subsequent metamorphic evolution. Detrital zircons from two-mica schist sample Mu-93-10 give ages of 1.88-2.66Ga. The oldest detrital zircon from this sample plots near concordia and has a 207Pb/206Pb age of 3.2Ga. Zircons from this sample are characterized by the widest scatter of eHf(t) values (from +13.9 to -15.3) and TCDM model ages (0.82-3.86Ga). Zircons from other samples have a much narrower ranges of eHf(t) (+11.6 to -0.7) and TCDM (0.85-1.52Ga). The involvement of older crustal material is also evident from the whole-rock Nd isotopic compositions. The gneisses and schists exhibit a range of Nd isotopic compositions with eNd(t) values ranging from -3.5 to +3.6 and tNd(DM) from 1.64 to 1.09Ga. The integration of the Hf-isotope data with the age spectra provides with the first evidence for the existence of Mesoarchean crust in the Baykal-Muya sector of the Central Asian Orogenic Belt.
AB - U-Pb dating and Hf-isotope analysis of zircons and whole-rock Nd-isotope analyses were carried out on country rocks of the eclogite-gneiss complex of the North Muya dome in the Anamakit-Muya zone of the Baikal Muya accretionary fold belt. Zircons from garnet-biotite gneisses (Qtz+Kfsp+Pl+Bt+Grt) and garnet-biotite-muscovite schist (Pl+Kfsp+Bt+Mu+Grt+Qtz) were dated using the LA-ICP-MS technique. Based on U-Pb isotope data and CL images zircon grains were divided into three groups: detrital, magmatic and metamorphic zircons. Metamorphic zircons display no zoning or the cloudy zoning. The grains morphology together with the well-developed oscillatory zoning clearly identifies the igneous origin of magmatic zircons. The metamorphic zircons (ages 576-680Ma) have Th/U ratios varying from 0.271 to 0.004, whereas the ratio in magmatic zircons ranges from 0.779 to 0.11. Magmatic zircons from granite-gneisses of the North Muya dome exhibit a relatively narrow spread in the crystallization age with the major peak at ca 764Ma. Younger ages are interpreted as due to the partial resetting of U-Pb system during the subsequent metamorphic evolution. Detrital zircons from two-mica schist sample Mu-93-10 give ages of 1.88-2.66Ga. The oldest detrital zircon from this sample plots near concordia and has a 207Pb/206Pb age of 3.2Ga. Zircons from this sample are characterized by the widest scatter of eHf(t) values (from +13.9 to -15.3) and TCDM model ages (0.82-3.86Ga). Zircons from other samples have a much narrower ranges of eHf(t) (+11.6 to -0.7) and TCDM (0.85-1.52Ga). The involvement of older crustal material is also evident from the whole-rock Nd isotopic compositions. The gneisses and schists exhibit a range of Nd isotopic compositions with eNd(t) values ranging from -3.5 to +3.6 and tNd(DM) from 1.64 to 1.09Ga. The integration of the Hf-isotope data with the age spectra provides with the first evidence for the existence of Mesoarchean crust in the Baykal-Muya sector of the Central Asian Orogenic Belt.
KW - Central Asian Orogenic Belt
KW - Continental subduction
KW - Hf isotopes
KW - U-Pb dating
KW - Zircon
UR - http://www.scopus.com/inward/record.url?scp=84923092002&partnerID=8YFLogxK
U2 - 10.1016/j.precamres.2015.01.013
DO - 10.1016/j.precamres.2015.01.013
M3 - Article
AN - SCOPUS:84923092002
VL - 261
SP - 1
EP - 11
JO - Precambrian Research
JF - Precambrian Research
SN - 0301-9268
ER -
ID: 25794706