Research output: Contribution to journal › Article › peer-review
Effect of Temperature Distribution on the Calculation of the Thermal Current in the Mathematical Model of Pulsed Heating of a Tungsten. / Lazareva, G. G.; Popov, V. A.
In: Lobachevskii Journal of Mathematics, Vol. 44, No. 10, 10.2023, p. 4457-4468.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Effect of Temperature Distribution on the Calculation of the Thermal Current in the Mathematical Model of Pulsed Heating of a Tungsten
AU - Lazareva, G. G.
AU - Popov, V. A.
N1 - This work has been supported by the grants the Russian Science Foundation no. 23-21-00134.
PY - 2023/10
Y1 - 2023/10
N2 - In this paper current distribution model in the tungsten sample and vapor at surface under electron beam heat was considered. The model is based on the solutions of electrodynamic equations and the two-phase Stefan problem in cylindrical coordinates. The two-phase Stefan problem defines the temperature inside a sample area taking into account the evaporation at its surface. A model temperature distribution in a thin layer of evaporated tungsten is used, which repeats the surface temperature. The electrodynamic equation include received temperature values and solved over the whole region. The case of constant values of electrical resistance and thermoemf in gases and metals is considered. The temperature calculations were made considering constant coefficients and temperature dependencies of specific heat capacity, density and thermal conductivity. It is shown that the detail of the coefficients of the Stefan problem has a great influence on the results of solving the electrodynamics equation. The model parameters are taken from the experiments on the Beam of Electrons for materials Test Applications (BETA) stand, created at the BINP SB RAS.
AB - In this paper current distribution model in the tungsten sample and vapor at surface under electron beam heat was considered. The model is based on the solutions of electrodynamic equations and the two-phase Stefan problem in cylindrical coordinates. The two-phase Stefan problem defines the temperature inside a sample area taking into account the evaporation at its surface. A model temperature distribution in a thin layer of evaporated tungsten is used, which repeats the surface temperature. The electrodynamic equation include received temperature values and solved over the whole region. The case of constant values of electrical resistance and thermoemf in gases and metals is considered. The temperature calculations were made considering constant coefficients and temperature dependencies of specific heat capacity, density and thermal conductivity. It is shown that the detail of the coefficients of the Stefan problem has a great influence on the results of solving the electrodynamics equation. The model parameters are taken from the experiments on the Beam of Electrons for materials Test Applications (BETA) stand, created at the BINP SB RAS.
KW - beta stand
KW - divertor material
KW - mathematical modeling
KW - pulse heating
KW - successive over-relaxation
KW - thermal currents
KW - tungsten
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85183425542&origin=inward&txGid=fdcdc9b63b924124537729e9a1a09a85
UR - https://elibrary.ru/item.asp?id=59741158
UR - https://www.mendeley.com/catalogue/25d72b67-caa5-39fe-a9c9-9b17b4366a24/
U2 - 10.1134/S199508022310027X
DO - 10.1134/S199508022310027X
M3 - Article
VL - 44
SP - 4457
EP - 4468
JO - Lobachevskii Journal of Mathematics
JF - Lobachevskii Journal of Mathematics
SN - 1995-0802
IS - 10
ER -
ID: 59614794