Research output: Contribution to journal › Article › peer-review
Double Lie algebras of a nonzero weight. / Goncharov, Maxim; Gubarev, Vsevolod.
In: Advances in Mathematics, Vol. 409, 108680, 19.11.2022.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Double Lie algebras of a nonzero weight
AU - Goncharov, Maxim
AU - Gubarev, Vsevolod
N1 - Funding Information: The research is supported by Russian Science Foundation (project 21-11-00286 ). Publisher Copyright: © 2022 Elsevier Inc.
PY - 2022/11/19
Y1 - 2022/11/19
N2 - We introduce the notion of λ-double Lie algebra, which coincides with usual double Lie algebra when λ=0. We show that every λ-double Lie algebra for λ≠0 provides the structure of modified double Poisson algebra on the free associative algebra. In particular, it confirms the conjecture of S. Arthamonov (2017). We prove that there are no simple finite-dimensional λ-double Lie algebras.
AB - We introduce the notion of λ-double Lie algebra, which coincides with usual double Lie algebra when λ=0. We show that every λ-double Lie algebra for λ≠0 provides the structure of modified double Poisson algebra on the free associative algebra. In particular, it confirms the conjecture of S. Arthamonov (2017). We prove that there are no simple finite-dimensional λ-double Lie algebras.
KW - Double Lie algebra
KW - Matrix algebra
KW - Modified double Poisson algebra
KW - Rota—Baxter operator
UR - http://www.scopus.com/inward/record.url?scp=85137709398&partnerID=8YFLogxK
U2 - 10.1016/j.aim.2022.108680
DO - 10.1016/j.aim.2022.108680
M3 - Article
AN - SCOPUS:85137709398
VL - 409
JO - Advances in Mathematics
JF - Advances in Mathematics
SN - 0001-8708
M1 - 108680
ER -
ID: 38037050