Standard

DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus. / Endutkin, Anton V.; Panferova, Elena P.; Barmatov, Alexander E. et al.

In: DNA Repair, Vol. 105, 103160, 09.2021, p. 103160.

Research output: Contribution to journalArticlepeer-review

Harvard

Endutkin, AV, Panferova, EP, Barmatov, AE & Zharkov, DO 2021, 'DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus', DNA Repair, vol. 105, 103160, pp. 103160. https://doi.org/10.1016/j.dnarep.2021.103160

APA

Endutkin, A. V., Panferova, E. P., Barmatov, A. E., & Zharkov, D. O. (2021). DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus. DNA Repair, 105, 103160. [103160]. https://doi.org/10.1016/j.dnarep.2021.103160

Vancouver

Endutkin AV, Panferova EP, Barmatov AE, Zharkov DO. DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus. DNA Repair. 2021 Sept;105:103160. 103160. doi: 10.1016/j.dnarep.2021.103160

Author

Endutkin, Anton V. ; Panferova, Elena P. ; Barmatov, Alexander E. et al. / DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus. In: DNA Repair. 2021 ; Vol. 105. pp. 103160.

BibTeX

@article{a04c0ddc39a5402ba569eb6413f9b978,
title = "DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus",
abstract = "GO system is part of base excision DNA repair and is required for the correct repair of 8-oxoguanine (8-oxoG), one of the most abundant oxidative lesions. Due to the ability of 8-oxoG to mispair with A, this base is highly mutagenic, and its repair requires two enzymes: Fpg that removes 8-oxoG from 8-oxoG:C pairs, and MutY that excises the normal A from 8-oxoG:A mispairs. Here we characterize the properties of putative GO system DNA glycosylases from Staphylococcus aureus, an important human opportunistic pathogen that causes hospital infections and presents a serious health concern due to quick spread of antibiotic-resistant strains. In addition to Fpg and MutY from the reference NCTC 8325 strain (SauFpg1 and SauMutY), we have also studied an Fpg homolog from a multidrug-resistant C0673 isolate (SauFpg2), which is different from SauFpg1 in its sequence. Both SauFpg enzymes showed the highest activity at pH 7.0–9.0 and NaCl concentrations 25–75 mM (SauFpg1) or 50–100 mM (SauFpg2), whereas SauMutY was active at a broad pH range and had a salt optimum at ∼75 mM NaCl. Both SauFpg1 and SauFpg2 bound and cleaved duplexes containing 8-oxoG, 5-hydroxyuracil, 5,6-dihydrouracil or apurinic/apyrimidinic site paired with C, T, or G, but not with A. For SauFpg1 and SauFpg2, 8-oxoG was the best substrate tested, and 5,6-dihydrouracil was the worst one. SauMutY efficiently excised adenine from duplex substrates containing A:8-oxoG or A:G pairs. SauFpg enzymes were readily trapped on DNA by NaBH4 treatment, indicating formation of a Schiff base reaction intermediate. Surprisingly, SauMutY was also trapped significantly better than its E. coli homolog. All three S. aureus GO glycosylases drastically reduced spontaneous mutagenesis when expressed in an fpg mutY E. coli double mutant. Overall, we conclude that S. aureus possesses an active GO system, which could possibly be targeted for sensitization of this pathogen to oxidative stress.",
keywords = "8-Oxoguanine, DNA damage, DNA glycosylases, DNA repair, GO system, Staphylococcus aureus",
author = "Endutkin, {Anton V.} and Panferova, {Elena P.} and Barmatov, {Alexander E.} and Zharkov, {Dmitry O.}",
note = "Funding Information: This research was supported by Russian Science Foundation (grant 19-74-00068 to A.V.E.). Partial salary support from the Russian Ministry of Science and Higher Education (State funded budget projects АААА-А17-117020210023-1 and FSUS-2020-0035) is acknowledged. DNA sequencing was performed at the SB RAS Genomics Core Facility. Publisher Copyright: {\textcopyright} 2021 Elsevier B.V.",
year = "2021",
month = sep,
doi = "10.1016/j.dnarep.2021.103160",
language = "English",
volume = "105",
pages = "103160",
journal = "DNA Repair",
issn = "1568-7864",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus

AU - Endutkin, Anton V.

AU - Panferova, Elena P.

AU - Barmatov, Alexander E.

AU - Zharkov, Dmitry O.

N1 - Funding Information: This research was supported by Russian Science Foundation (grant 19-74-00068 to A.V.E.). Partial salary support from the Russian Ministry of Science and Higher Education (State funded budget projects АААА-А17-117020210023-1 and FSUS-2020-0035) is acknowledged. DNA sequencing was performed at the SB RAS Genomics Core Facility. Publisher Copyright: © 2021 Elsevier B.V.

PY - 2021/9

Y1 - 2021/9

N2 - GO system is part of base excision DNA repair and is required for the correct repair of 8-oxoguanine (8-oxoG), one of the most abundant oxidative lesions. Due to the ability of 8-oxoG to mispair with A, this base is highly mutagenic, and its repair requires two enzymes: Fpg that removes 8-oxoG from 8-oxoG:C pairs, and MutY that excises the normal A from 8-oxoG:A mispairs. Here we characterize the properties of putative GO system DNA glycosylases from Staphylococcus aureus, an important human opportunistic pathogen that causes hospital infections and presents a serious health concern due to quick spread of antibiotic-resistant strains. In addition to Fpg and MutY from the reference NCTC 8325 strain (SauFpg1 and SauMutY), we have also studied an Fpg homolog from a multidrug-resistant C0673 isolate (SauFpg2), which is different from SauFpg1 in its sequence. Both SauFpg enzymes showed the highest activity at pH 7.0–9.0 and NaCl concentrations 25–75 mM (SauFpg1) or 50–100 mM (SauFpg2), whereas SauMutY was active at a broad pH range and had a salt optimum at ∼75 mM NaCl. Both SauFpg1 and SauFpg2 bound and cleaved duplexes containing 8-oxoG, 5-hydroxyuracil, 5,6-dihydrouracil or apurinic/apyrimidinic site paired with C, T, or G, but not with A. For SauFpg1 and SauFpg2, 8-oxoG was the best substrate tested, and 5,6-dihydrouracil was the worst one. SauMutY efficiently excised adenine from duplex substrates containing A:8-oxoG or A:G pairs. SauFpg enzymes were readily trapped on DNA by NaBH4 treatment, indicating formation of a Schiff base reaction intermediate. Surprisingly, SauMutY was also trapped significantly better than its E. coli homolog. All three S. aureus GO glycosylases drastically reduced spontaneous mutagenesis when expressed in an fpg mutY E. coli double mutant. Overall, we conclude that S. aureus possesses an active GO system, which could possibly be targeted for sensitization of this pathogen to oxidative stress.

AB - GO system is part of base excision DNA repair and is required for the correct repair of 8-oxoguanine (8-oxoG), one of the most abundant oxidative lesions. Due to the ability of 8-oxoG to mispair with A, this base is highly mutagenic, and its repair requires two enzymes: Fpg that removes 8-oxoG from 8-oxoG:C pairs, and MutY that excises the normal A from 8-oxoG:A mispairs. Here we characterize the properties of putative GO system DNA glycosylases from Staphylococcus aureus, an important human opportunistic pathogen that causes hospital infections and presents a serious health concern due to quick spread of antibiotic-resistant strains. In addition to Fpg and MutY from the reference NCTC 8325 strain (SauFpg1 and SauMutY), we have also studied an Fpg homolog from a multidrug-resistant C0673 isolate (SauFpg2), which is different from SauFpg1 in its sequence. Both SauFpg enzymes showed the highest activity at pH 7.0–9.0 and NaCl concentrations 25–75 mM (SauFpg1) or 50–100 mM (SauFpg2), whereas SauMutY was active at a broad pH range and had a salt optimum at ∼75 mM NaCl. Both SauFpg1 and SauFpg2 bound and cleaved duplexes containing 8-oxoG, 5-hydroxyuracil, 5,6-dihydrouracil or apurinic/apyrimidinic site paired with C, T, or G, but not with A. For SauFpg1 and SauFpg2, 8-oxoG was the best substrate tested, and 5,6-dihydrouracil was the worst one. SauMutY efficiently excised adenine from duplex substrates containing A:8-oxoG or A:G pairs. SauFpg enzymes were readily trapped on DNA by NaBH4 treatment, indicating formation of a Schiff base reaction intermediate. Surprisingly, SauMutY was also trapped significantly better than its E. coli homolog. All three S. aureus GO glycosylases drastically reduced spontaneous mutagenesis when expressed in an fpg mutY E. coli double mutant. Overall, we conclude that S. aureus possesses an active GO system, which could possibly be targeted for sensitization of this pathogen to oxidative stress.

KW - 8-Oxoguanine

KW - DNA damage

KW - DNA glycosylases

KW - DNA repair

KW - GO system

KW - Staphylococcus aureus

UR - http://www.scopus.com/inward/record.url?scp=85111071193&partnerID=8YFLogxK

U2 - 10.1016/j.dnarep.2021.103160

DO - 10.1016/j.dnarep.2021.103160

M3 - Article

C2 - 34192601

AN - SCOPUS:85111071193

VL - 105

SP - 103160

JO - DNA Repair

JF - DNA Repair

SN - 1568-7864

M1 - 103160

ER -

ID: 29131285