Standard

Discrete analog of the jacobi set for vector fields. / Adilkhanov, A. N.; Pavlov, A. V.; Taimanov, I. A.

Computational Topology in Image Context - 7th International Workshop, CTIC 2019, Proceedings. ed. / Rebeca Marfil; Mariletty Calderón; Antonio Bandera; Fernando Díaz del Río; Pedro Real. Springer-Verlag GmbH and Co. KG, 2019. p. 1-11 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11382 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Harvard

Adilkhanov, AN, Pavlov, AV & Taimanov, IA 2019, Discrete analog of the jacobi set for vector fields. in R Marfil, M Calderón, A Bandera, F Díaz del Río & P Real (eds), Computational Topology in Image Context - 7th International Workshop, CTIC 2019, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11382 LNCS, Springer-Verlag GmbH and Co. KG, pp. 1-11, 7th International Workshop on Computational Topology in Image Context, CTIC 2019, Málaga, Spain, 24.01.2019. https://doi.org/10.1007/978-3-030-10828-1_1

APA

Adilkhanov, A. N., Pavlov, A. V., & Taimanov, I. A. (2019). Discrete analog of the jacobi set for vector fields. In R. Marfil, M. Calderón, A. Bandera, F. Díaz del Río, & P. Real (Eds.), Computational Topology in Image Context - 7th International Workshop, CTIC 2019, Proceedings (pp. 1-11). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11382 LNCS). Springer-Verlag GmbH and Co. KG. https://doi.org/10.1007/978-3-030-10828-1_1

Vancouver

Adilkhanov AN, Pavlov AV, Taimanov IA. Discrete analog of the jacobi set for vector fields. In Marfil R, Calderón M, Bandera A, Díaz del Río F, Real P, editors, Computational Topology in Image Context - 7th International Workshop, CTIC 2019, Proceedings. Springer-Verlag GmbH and Co. KG. 2019. p. 1-11. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). doi: 10.1007/978-3-030-10828-1_1

Author

Adilkhanov, A. N. ; Pavlov, A. V. ; Taimanov, I. A. / Discrete analog of the jacobi set for vector fields. Computational Topology in Image Context - 7th International Workshop, CTIC 2019, Proceedings. editor / Rebeca Marfil ; Mariletty Calderón ; Antonio Bandera ; Fernando Díaz del Río ; Pedro Real. Springer-Verlag GmbH and Co. KG, 2019. pp. 1-11 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

BibTeX

@inproceedings{26e16a60e9e64bfcaa17cf4236416f52,
title = "Discrete analog of the jacobi set for vector fields",
abstract = "The Jacobi set is a useful descriptor of mutual behavior of functions defined on a common domain. We introduce the piecewise linear Jacobi set for general vector fields on simplicial complexes. This definition generalizes the definition of the Jacobi set for gradients of functions introduced by Edelsbrunner and Harer.",
keywords = "Jacobi set, Simplicial complex, Vector fields",
author = "Adilkhanov, {A. N.} and Pavlov, {A. V.} and Taimanov, {I. A.}",
year = "2019",
month = jan,
day = "1",
doi = "10.1007/978-3-030-10828-1_1",
language = "English",
isbn = "9783030108274",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer-Verlag GmbH and Co. KG",
pages = "1--11",
editor = "Rebeca Marfil and Mariletty Calder{\'o}n and Antonio Bandera and {D{\'i}az del R{\'i}o}, Fernando and Pedro Real",
booktitle = "Computational Topology in Image Context - 7th International Workshop, CTIC 2019, Proceedings",
address = "Germany",
note = "7th International Workshop on Computational Topology in Image Context, CTIC 2019 ; Conference date: 24-01-2019 Through 25-01-2019",

}

RIS

TY - GEN

T1 - Discrete analog of the jacobi set for vector fields

AU - Adilkhanov, A. N.

AU - Pavlov, A. V.

AU - Taimanov, I. A.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The Jacobi set is a useful descriptor of mutual behavior of functions defined on a common domain. We introduce the piecewise linear Jacobi set for general vector fields on simplicial complexes. This definition generalizes the definition of the Jacobi set for gradients of functions introduced by Edelsbrunner and Harer.

AB - The Jacobi set is a useful descriptor of mutual behavior of functions defined on a common domain. We introduce the piecewise linear Jacobi set for general vector fields on simplicial complexes. This definition generalizes the definition of the Jacobi set for gradients of functions introduced by Edelsbrunner and Harer.

KW - Jacobi set

KW - Simplicial complex

KW - Vector fields

UR - http://www.scopus.com/inward/record.url?scp=85061084233&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-10828-1_1

DO - 10.1007/978-3-030-10828-1_1

M3 - Conference contribution

AN - SCOPUS:85061084233

SN - 9783030108274

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 1

EP - 11

BT - Computational Topology in Image Context - 7th International Workshop, CTIC 2019, Proceedings

A2 - Marfil, Rebeca

A2 - Calderón, Mariletty

A2 - Bandera, Antonio

A2 - Díaz del Río, Fernando

A2 - Real, Pedro

PB - Springer-Verlag GmbH and Co. KG

T2 - 7th International Workshop on Computational Topology in Image Context, CTIC 2019

Y2 - 24 January 2019 through 25 January 2019

ER -

ID: 18486950