Standard

Dielectric ordering of water molecules arranged in a dipolar lattice. / Belyanchikov, M. A.; Savinov, M.; Bedran, Z. V. et al.

In: Nature Communications, Vol. 11, No. 1, 3927, 01.12.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Belyanchikov, MA, Savinov, M, Bedran, ZV, Bednyakov, P, Proschek, P, Prokleska, J, Abalmasov, VA, Petzelt, J, Zhukova, ES, Thomas, VG, Dudka, A, Zhugayevych, A, Prokhorov, AS, Anzin, VB, Kremer, RK, Fischer, JKH, Lunkenheimer, P, Loidl, A, Uykur, E, Dressel, M & Gorshunov, B 2020, 'Dielectric ordering of water molecules arranged in a dipolar lattice', Nature Communications, vol. 11, no. 1, 3927. https://doi.org/10.1038/s41467-020-17832-y

APA

Belyanchikov, M. A., Savinov, M., Bedran, Z. V., Bednyakov, P., Proschek, P., Prokleska, J., Abalmasov, V. A., Petzelt, J., Zhukova, E. S., Thomas, V. G., Dudka, A., Zhugayevych, A., Prokhorov, A. S., Anzin, V. B., Kremer, R. K., Fischer, J. K. H., Lunkenheimer, P., Loidl, A., Uykur, E., ... Gorshunov, B. (2020). Dielectric ordering of water molecules arranged in a dipolar lattice. Nature Communications, 11(1), [3927]. https://doi.org/10.1038/s41467-020-17832-y

Vancouver

Belyanchikov MA, Savinov M, Bedran ZV, Bednyakov P, Proschek P, Prokleska J et al. Dielectric ordering of water molecules arranged in a dipolar lattice. Nature Communications. 2020 Dec 1;11(1):3927. doi: 10.1038/s41467-020-17832-y

Author

Belyanchikov, M. A. ; Savinov, M. ; Bedran, Z. V. et al. / Dielectric ordering of water molecules arranged in a dipolar lattice. In: Nature Communications. 2020 ; Vol. 11, No. 1.

BibTeX

@article{3b235aa7e5c244b7b1d33e135c688a51,
title = "Dielectric ordering of water molecules arranged in a dipolar lattice",
abstract = "Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 {\AA} with an interchannel separation of ~10 {\AA} prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.",
keywords = "SQUARE ICE, FERROELECTRIC ICE, HYDRATION SHELLS, H2O MOLECULES, DYNAMICS, TRANSITION, NANOTUBES, RELAXATION, CORDIERITE, DIFFUSION",
author = "Belyanchikov, {M. A.} and M. Savinov and Bedran, {Z. V.} and P. Bednyakov and P. Proschek and J. Prokleska and Abalmasov, {V. A.} and J. Petzelt and Zhukova, {E. S.} and Thomas, {V. G.} and A. Dudka and A. Zhugayevych and Prokhorov, {A. S.} and Anzin, {V. B.} and Kremer, {R. K.} and Fischer, {J. K.H.} and P. Lunkenheimer and A. Loidl and E. Uykur and M. Dressel and B. Gorshunov",
year = "2020",
month = dec,
day = "1",
doi = "10.1038/s41467-020-17832-y",
language = "English",
volume = "11",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

RIS

TY - JOUR

T1 - Dielectric ordering of water molecules arranged in a dipolar lattice

AU - Belyanchikov, M. A.

AU - Savinov, M.

AU - Bedran, Z. V.

AU - Bednyakov, P.

AU - Proschek, P.

AU - Prokleska, J.

AU - Abalmasov, V. A.

AU - Petzelt, J.

AU - Zhukova, E. S.

AU - Thomas, V. G.

AU - Dudka, A.

AU - Zhugayevych, A.

AU - Prokhorov, A. S.

AU - Anzin, V. B.

AU - Kremer, R. K.

AU - Fischer, J. K.H.

AU - Lunkenheimer, P.

AU - Loidl, A.

AU - Uykur, E.

AU - Dressel, M.

AU - Gorshunov, B.

PY - 2020/12/1

Y1 - 2020/12/1

N2 - Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 Å with an interchannel separation of ~10 Å prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.

AB - Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 Å with an interchannel separation of ~10 Å prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.

KW - SQUARE ICE

KW - FERROELECTRIC ICE

KW - HYDRATION SHELLS

KW - H2O MOLECULES

KW - DYNAMICS

KW - TRANSITION

KW - NANOTUBES

KW - RELAXATION

KW - CORDIERITE

KW - DIFFUSION

UR - http://www.scopus.com/inward/record.url?scp=85089138331&partnerID=8YFLogxK

U2 - 10.1038/s41467-020-17832-y

DO - 10.1038/s41467-020-17832-y

M3 - Article

C2 - 32764722

AN - SCOPUS:85089138331

VL - 11

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 3927

ER -

ID: 24966698