Dielectric ordering of water molecules arranged in a dipolar lattice. / Belyanchikov, M. A.; Savinov, M.; Bedran, Z. V. et al.
In: Nature Communications, Vol. 11, No. 1, 3927, 01.12.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Dielectric ordering of water molecules arranged in a dipolar lattice
AU - Belyanchikov, M. A.
AU - Savinov, M.
AU - Bedran, Z. V.
AU - Bednyakov, P.
AU - Proschek, P.
AU - Prokleska, J.
AU - Abalmasov, V. A.
AU - Petzelt, J.
AU - Zhukova, E. S.
AU - Thomas, V. G.
AU - Dudka, A.
AU - Zhugayevych, A.
AU - Prokhorov, A. S.
AU - Anzin, V. B.
AU - Kremer, R. K.
AU - Fischer, J. K.H.
AU - Lunkenheimer, P.
AU - Loidl, A.
AU - Uykur, E.
AU - Dressel, M.
AU - Gorshunov, B.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 Å with an interchannel separation of ~10 Å prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.
AB - Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 Å with an interchannel separation of ~10 Å prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.
KW - SQUARE ICE
KW - FERROELECTRIC ICE
KW - HYDRATION SHELLS
KW - H2O MOLECULES
KW - DYNAMICS
KW - TRANSITION
KW - NANOTUBES
KW - RELAXATION
KW - CORDIERITE
KW - DIFFUSION
UR - http://www.scopus.com/inward/record.url?scp=85089138331&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-17832-y
DO - 10.1038/s41467-020-17832-y
M3 - Article
C2 - 32764722
AN - SCOPUS:85089138331
VL - 11
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 3927
ER -
ID: 24966698