Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
Deep laser cooling of Mg in dipole trap for frequency standard. / Prudnikov, O. N.; Taichenachev, A. V.; Yudin, V. I. et al.
2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, EFTF/IFC 2017 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 2017. p. 432-436 8088915.Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
}
TY - GEN
T1 - Deep laser cooling of Mg in dipole trap for frequency standard
AU - Prudnikov, O. N.
AU - Taichenachev, A. V.
AU - Yudin, V. I.
AU - Rasel, E. M.
PY - 2017/10/27
Y1 - 2017/10/27
N2 - We study deep laser cooling of 24Mg atoms in dipole optical trap with pumping field resonant to narrow (3s3s)1S0 → (3s3p)3P1 (λ, = 457nm) optical transition. We consider two quantum models: the first one based on direct numerical solution of quantum kinetic equation for atom density matrix and the second one is simplified model based on decomposition of atom density matrix on vibration states in dipole trap. Both models shows close results. We search pumping field intensity and detuning for minimum laser cooling energy of atoms and fast laser cooling.
AB - We study deep laser cooling of 24Mg atoms in dipole optical trap with pumping field resonant to narrow (3s3s)1S0 → (3s3p)3P1 (λ, = 457nm) optical transition. We consider two quantum models: the first one based on direct numerical solution of quantum kinetic equation for atom density matrix and the second one is simplified model based on decomposition of atom density matrix on vibration states in dipole trap. Both models shows close results. We search pumping field intensity and detuning for minimum laser cooling energy of atoms and fast laser cooling.
KW - dipole trap
KW - laser cooling
KW - optical lattices
UR - http://www.scopus.com/inward/record.url?scp=85040168941&partnerID=8YFLogxK
U2 - 10.1109/FCS.2017.8088915
DO - 10.1109/FCS.2017.8088915
M3 - Conference contribution
AN - SCOPUS:85040168941
SP - 432
EP - 436
BT - 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, EFTF/IFC 2017 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, EFTF/IFC 2017
Y2 - 9 July 2017 through 13 July 2017
ER -
ID: 9641882