Standard

Deconvolution of 3-D Gaussian kernels. / Silagadze, Z. K.

In: Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 383, No. 30, 125874, 25.10.2019.

Research output: Contribution to journalArticlepeer-review

Harvard

Silagadze, ZK 2019, 'Deconvolution of 3-D Gaussian kernels', Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 383, no. 30, 125874. https://doi.org/10.1016/j.physleta.2019.125874

APA

Silagadze, Z. K. (2019). Deconvolution of 3-D Gaussian kernels. Physics Letters, Section A: General, Atomic and Solid State Physics, 383(30), [125874]. https://doi.org/10.1016/j.physleta.2019.125874

Vancouver

Silagadze ZK. Deconvolution of 3-D Gaussian kernels. Physics Letters, Section A: General, Atomic and Solid State Physics. 2019 Oct 25;383(30):125874. doi: 10.1016/j.physleta.2019.125874

Author

Silagadze, Z. K. / Deconvolution of 3-D Gaussian kernels. In: Physics Letters, Section A: General, Atomic and Solid State Physics. 2019 ; Vol. 383, No. 30.

BibTeX

@article{335e8be45efa45678aa31ef497c0ca72,
title = "Deconvolution of 3-D Gaussian kernels",
abstract = "Ulmer and Kaissl formulas for the deconvolution of one-dimensional Gaussian kernels are generalized to the three-dimensional case. The generalization is based on the use of the scalar version of the Grad's multivariate Hermite polynomials which can be expressed through ordinary Hermite polynomials.",
keywords = "Deconvolution, Gaussian kernels, Hermite polynomials, Laguerre polynomials, Multivariate Hermite polynomials, HERMITE, CONVOLUTION",
author = "Silagadze, {Z. K.}",
note = "Publisher Copyright: {\textcopyright} 2019 Elsevier B.V.",
year = "2019",
month = oct,
day = "25",
doi = "10.1016/j.physleta.2019.125874",
language = "English",
volume = "383",
journal = "Physics Letters, Section A: General, Atomic and Solid State Physics",
issn = "0375-9601",
publisher = "Elsevier",
number = "30",

}

RIS

TY - JOUR

T1 - Deconvolution of 3-D Gaussian kernels

AU - Silagadze, Z. K.

N1 - Publisher Copyright: © 2019 Elsevier B.V.

PY - 2019/10/25

Y1 - 2019/10/25

N2 - Ulmer and Kaissl formulas for the deconvolution of one-dimensional Gaussian kernels are generalized to the three-dimensional case. The generalization is based on the use of the scalar version of the Grad's multivariate Hermite polynomials which can be expressed through ordinary Hermite polynomials.

AB - Ulmer and Kaissl formulas for the deconvolution of one-dimensional Gaussian kernels are generalized to the three-dimensional case. The generalization is based on the use of the scalar version of the Grad's multivariate Hermite polynomials which can be expressed through ordinary Hermite polynomials.

KW - Deconvolution

KW - Gaussian kernels

KW - Hermite polynomials

KW - Laguerre polynomials

KW - Multivariate Hermite polynomials

KW - HERMITE

KW - CONVOLUTION

UR - http://www.scopus.com/inward/record.url?scp=85070206521&partnerID=8YFLogxK

U2 - 10.1016/j.physleta.2019.125874

DO - 10.1016/j.physleta.2019.125874

M3 - Article

AN - SCOPUS:85070206521

VL - 383

JO - Physics Letters, Section A: General, Atomic and Solid State Physics

JF - Physics Letters, Section A: General, Atomic and Solid State Physics

SN - 0375-9601

IS - 30

M1 - 125874

ER -

ID: 21158092