Standard

Darboux Moutard Transformations and Poincaré—Steklov Operators. / Novikov, R. G.; Taimanov, I. A.

In: Proceedings of the Steklov Institute of Mathematics, Vol. 302, No. 1, 01.08.2018, p. 315-324.

Research output: Contribution to journalArticlepeer-review

Harvard

Novikov, RG & Taimanov, IA 2018, 'Darboux Moutard Transformations and Poincaré—Steklov Operators', Proceedings of the Steklov Institute of Mathematics, vol. 302, no. 1, pp. 315-324. https://doi.org/10.1134/S0081543818060160

APA

Novikov, R. G., & Taimanov, I. A. (2018). Darboux Moutard Transformations and Poincaré—Steklov Operators. Proceedings of the Steklov Institute of Mathematics, 302(1), 315-324. https://doi.org/10.1134/S0081543818060160

Vancouver

Novikov RG, Taimanov IA. Darboux Moutard Transformations and Poincaré—Steklov Operators. Proceedings of the Steklov Institute of Mathematics. 2018 Aug 1;302(1):315-324. doi: 10.1134/S0081543818060160

Author

Novikov, R. G. ; Taimanov, I. A. / Darboux Moutard Transformations and Poincaré—Steklov Operators. In: Proceedings of the Steklov Institute of Mathematics. 2018 ; Vol. 302, No. 1. pp. 315-324.

BibTeX

@article{25f86b2ce6284b088deb98c10bd53b81,
title = "Darboux Moutard Transformations and Poincar{\'e}—Steklov Operators",
abstract = "Formulas relating Poincar{\'e}–Steklov operators for Schr{\"o}dinger equations related by Darboux–Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.",
keywords = "GENERALIZED-ANALYTIC-FUNCTIONS, 2-DIMENSIONAL SCHRODINGER-OPERATORS, NOVIKOV-VESELOV EQUATION, BLOWING-UP SOLUTIONS, DIRAC OPERATORS",
author = "Novikov, {R. G.} and Taimanov, {I. A.}",
year = "2018",
month = aug,
day = "1",
doi = "10.1134/S0081543818060160",
language = "English",
volume = "302",
pages = "315--324",
journal = "Proceedings of the Steklov Institute of Mathematics",
issn = "0081-5438",
publisher = "Maik Nauka Publishing / Springer SBM",
number = "1",

}

RIS

TY - JOUR

T1 - Darboux Moutard Transformations and Poincaré—Steklov Operators

AU - Novikov, R. G.

AU - Taimanov, I. A.

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Formulas relating Poincaré–Steklov operators for Schrödinger equations related by Darboux–Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.

AB - Formulas relating Poincaré–Steklov operators for Schrödinger equations related by Darboux–Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.

KW - GENERALIZED-ANALYTIC-FUNCTIONS

KW - 2-DIMENSIONAL SCHRODINGER-OPERATORS

KW - NOVIKOV-VESELOV EQUATION

KW - BLOWING-UP SOLUTIONS

KW - DIRAC OPERATORS

UR - http://www.scopus.com/inward/record.url?scp=85059506022&partnerID=8YFLogxK

U2 - 10.1134/S0081543818060160

DO - 10.1134/S0081543818060160

M3 - Article

AN - SCOPUS:85059506022

VL - 302

SP - 315

EP - 324

JO - Proceedings of the Steklov Institute of Mathematics

JF - Proceedings of the Steklov Institute of Mathematics

SN - 0081-5438

IS - 1

ER -

ID: 18065698