Complexity of the Isomorphism Problem for Computable Free Projective Planes of Finite Rank. / Kogabaev, N. T.
In: Siberian Mathematical Journal, Vol. 59, No. 2, 01.03.2018, p. 295-308.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Complexity of the Isomorphism Problem for Computable Free Projective Planes of Finite Rank
AU - Kogabaev, N. T.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Studying computable representations of projective planes, we prove that the isomorphism problem in the class of free projective planes of finite rank is an m-complete Δ0 3-set within the class.
AB - Studying computable representations of projective planes, we prove that the isomorphism problem in the class of free projective planes of finite rank is an m-complete Δ0 3-set within the class.
KW - computable representation
KW - computable structure
KW - free projective plane
KW - isomorphism problem
KW - projective plane
KW - HOMOMORPHISMS
KW - EMBEDDING PROBLEM
UR - http://www.scopus.com/inward/record.url?scp=85046639587&partnerID=8YFLogxK
U2 - 10.1134/S0037446618020131
DO - 10.1134/S0037446618020131
M3 - Article
AN - SCOPUS:85046639587
VL - 59
SP - 295
EP - 308
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 2
ER -
ID: 13332157