Standard

Complexity of the Isomorphism Problem for Computable Free Projective Planes of Finite Rank. / Kogabaev, N. T.

In: Siberian Mathematical Journal, Vol. 59, No. 2, 01.03.2018, p. 295-308.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Kogabaev NT. Complexity of the Isomorphism Problem for Computable Free Projective Planes of Finite Rank. Siberian Mathematical Journal. 2018 Mar 1;59(2):295-308. doi: 10.1134/S0037446618020131

Author

Kogabaev, N. T. / Complexity of the Isomorphism Problem for Computable Free Projective Planes of Finite Rank. In: Siberian Mathematical Journal. 2018 ; Vol. 59, No. 2. pp. 295-308.

BibTeX

@article{0282aefad0d94731a516276c0229d4c8,
title = "Complexity of the Isomorphism Problem for Computable Free Projective Planes of Finite Rank",
abstract = "Studying computable representations of projective planes, we prove that the isomorphism problem in the class of free projective planes of finite rank is an m-complete Δ0 3-set within the class.",
keywords = "computable representation, computable structure, free projective plane, isomorphism problem, projective plane, HOMOMORPHISMS, EMBEDDING PROBLEM",
author = "Kogabaev, {N. T.}",
year = "2018",
month = mar,
day = "1",
doi = "10.1134/S0037446618020131",
language = "English",
volume = "59",
pages = "295--308",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "2",

}

RIS

TY - JOUR

T1 - Complexity of the Isomorphism Problem for Computable Free Projective Planes of Finite Rank

AU - Kogabaev, N. T.

PY - 2018/3/1

Y1 - 2018/3/1

N2 - Studying computable representations of projective planes, we prove that the isomorphism problem in the class of free projective planes of finite rank is an m-complete Δ0 3-set within the class.

AB - Studying computable representations of projective planes, we prove that the isomorphism problem in the class of free projective planes of finite rank is an m-complete Δ0 3-set within the class.

KW - computable representation

KW - computable structure

KW - free projective plane

KW - isomorphism problem

KW - projective plane

KW - HOMOMORPHISMS

KW - EMBEDDING PROBLEM

UR - http://www.scopus.com/inward/record.url?scp=85046639587&partnerID=8YFLogxK

U2 - 10.1134/S0037446618020131

DO - 10.1134/S0037446618020131

M3 - Article

AN - SCOPUS:85046639587

VL - 59

SP - 295

EP - 308

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 2

ER -

ID: 13332157