Standard

Coherent states of quantum linear rotator. / Il'ichov, L. V.; Tomilin, V. A.

In: Physica A: Statistical Mechanics and its Applications, Vol. 503, 01.08.2018, p. 856-861.

Research output: Contribution to journalArticlepeer-review

Harvard

Il'ichov, LV & Tomilin, VA 2018, 'Coherent states of quantum linear rotator', Physica A: Statistical Mechanics and its Applications, vol. 503, pp. 856-861. https://doi.org/10.1016/j.physa.2018.03.022

APA

Il'ichov, L. V., & Tomilin, V. A. (2018). Coherent states of quantum linear rotator. Physica A: Statistical Mechanics and its Applications, 503, 856-861. https://doi.org/10.1016/j.physa.2018.03.022

Vancouver

Il'ichov LV, Tomilin VA. Coherent states of quantum linear rotator. Physica A: Statistical Mechanics and its Applications. 2018 Aug 1;503:856-861. doi: 10.1016/j.physa.2018.03.022

Author

Il'ichov, L. V. ; Tomilin, V. A. / Coherent states of quantum linear rotator. In: Physica A: Statistical Mechanics and its Applications. 2018 ; Vol. 503. pp. 856-861.

BibTeX

@article{8921c499d4ca49b4b068923a297828ae,
title = "Coherent states of quantum linear rotator",
abstract = "A system of coherent states is constructed for quantum linear rotator — a model for rotation of a diatomic molecule. The rotator in such a state possesses definite averages of orientation and angular momentum. Construction of coherent states is done in the framework of generalized Jordan–Schwinger approach to quantum angular momentum. The final definition of the coherent states involves operators which span the Lie algebra of metaplectic group Mp(4,R).",
keywords = "Coherent states, Jordan–Schwinger representation of angular momentum, Quantum linear rotator, Jordan-Schwinger representation of angular momentum, NUCLEAR-SPIN CONVERSION, MODEL",
author = "Il'ichov, {L. V.} and Tomilin, {V. A.}",
note = "Publisher Copyright: {\textcopyright} 2018",
year = "2018",
month = aug,
day = "1",
doi = "10.1016/j.physa.2018.03.022",
language = "English",
volume = "503",
pages = "856--861",
journal = "Physica A: Statistical Mechanics and its Applications",
issn = "0378-4371",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Coherent states of quantum linear rotator

AU - Il'ichov, L. V.

AU - Tomilin, V. A.

N1 - Publisher Copyright: © 2018

PY - 2018/8/1

Y1 - 2018/8/1

N2 - A system of coherent states is constructed for quantum linear rotator — a model for rotation of a diatomic molecule. The rotator in such a state possesses definite averages of orientation and angular momentum. Construction of coherent states is done in the framework of generalized Jordan–Schwinger approach to quantum angular momentum. The final definition of the coherent states involves operators which span the Lie algebra of metaplectic group Mp(4,R).

AB - A system of coherent states is constructed for quantum linear rotator — a model for rotation of a diatomic molecule. The rotator in such a state possesses definite averages of orientation and angular momentum. Construction of coherent states is done in the framework of generalized Jordan–Schwinger approach to quantum angular momentum. The final definition of the coherent states involves operators which span the Lie algebra of metaplectic group Mp(4,R).

KW - Coherent states

KW - Jordan–Schwinger representation of angular momentum

KW - Quantum linear rotator

KW - Jordan-Schwinger representation of angular momentum

KW - NUCLEAR-SPIN CONVERSION

KW - MODEL

UR - http://www.scopus.com/inward/record.url?scp=85044149078&partnerID=8YFLogxK

U2 - 10.1016/j.physa.2018.03.022

DO - 10.1016/j.physa.2018.03.022

M3 - Article

AN - SCOPUS:85044149078

VL - 503

SP - 856

EP - 861

JO - Physica A: Statistical Mechanics and its Applications

JF - Physica A: Statistical Mechanics and its Applications

SN - 0378-4371

ER -

ID: 12154952