Categoricity Spectra of Computable Structures. / Bazhenov, N. A.
In: Journal of Mathematical Sciences (United States), Vol. 256, No. 1, 07.2021, p. 34-50.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Categoricity Spectra of Computable Structures
AU - Bazhenov, N. A.
N1 - Publisher Copyright: © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/7
Y1 - 2021/7
N2 - The categoricity spectrum of a computable structure S is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable presentations of S. The degree of categoricity of S is the least degree in the categoricity spectrum of S. This paper is a survey of results on categoricity spectra and degrees of categoricity for computable structures. We focus on the results about degrees of categoricity for linear orders and Boolean algebras. We construct a new series of examples of degrees of categoricity for linear orders.
AB - The categoricity spectrum of a computable structure S is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable presentations of S. The degree of categoricity of S is the least degree in the categoricity spectrum of S. This paper is a survey of results on categoricity spectra and degrees of categoricity for computable structures. We focus on the results about degrees of categoricity for linear orders and Boolean algebras. We construct a new series of examples of degrees of categoricity for linear orders.
KW - 03C57
KW - 03D45
KW - autostability
KW - autostability relative to strong constructivizations
KW - Boolean algebra
KW - categoricity spectrum
KW - computable categoricity
KW - computable structure
KW - decidable categoricity
KW - degree of categoricity
KW - index set
KW - linear order
UR - http://www.scopus.com/inward/record.url?scp=85106673672&partnerID=8YFLogxK
U2 - 10.1007/s10958-021-05419-x
DO - 10.1007/s10958-021-05419-x
M3 - Article
AN - SCOPUS:85106673672
VL - 256
SP - 34
EP - 50
JO - Journal of Mathematical Sciences (United States)
JF - Journal of Mathematical Sciences (United States)
SN - 1072-3374
IS - 1
ER -
ID: 34030211