Standard

Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 °c. / Sokol, Alexander G.; Tomilenko, Anatoly A.; Bul'Bak, Taras A. et al.

In: Scientific Reports, Vol. 7, No. 1, 706, 06.04.2017.

Research output: Contribution to journalArticlepeer-review

Harvard

Sokol, AG, Tomilenko, AA, Bul'Bak, TA, Palyanova, GA, Sokol, IA & Palyanov, YN 2017, 'Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 °c', Scientific Reports, vol. 7, no. 1, 706. https://doi.org/10.1038/s41598-017-00679-7

APA

Sokol, A. G., Tomilenko, A. A., Bul'Bak, T. A., Palyanova, G. A., Sokol, I. A., & Palyanov, Y. N. (2017). Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 °c. Scientific Reports, 7(1), [706]. https://doi.org/10.1038/s41598-017-00679-7

Vancouver

Sokol AG, Tomilenko AA, Bul'Bak TA, Palyanova GA, Sokol IA, Palyanov YN. Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 °c. Scientific Reports. 2017 Apr 6;7(1):706. doi: 10.1038/s41598-017-00679-7

Author

Sokol, Alexander G. ; Tomilenko, Anatoly A. ; Bul'Bak, Taras A. et al. / Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 °c. In: Scientific Reports. 2017 ; Vol. 7, No. 1.

BibTeX

@article{3d955346f330489a9dce182343ae2a2d,
title = "Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 °c",
abstract = "Deep carbon and nitrogen cycles played a critical role in the evolution of the Earth. Here we report on successful studying of speciation in C-O-H-N systems with low nitrogen contents at 6.3 GPa and 1100 to 1400 °C. At fO2 near Fe-FeO (IW) equilibrium, the synthesised fluids contain more than thirty species. Among them, CH4, C2H6, C3H8 and C4H10 are main carbon species. All carbon species, except for C1-C4 alkanes and alcohols, occur in negligible amounts in the fluids generated in systems with low H2O, but C15-C18 alkanes are slightly higher and oxygenated hydrocarbons are more diverse at higher temperatures and H2O concentrations. At a higher oxygen fugacity of +2.5 Δlog fO2 (IW), the fluids almost lack methane and contain about 1 rel.% C2-C4 alkanes, as well as fractions of percent of C15-18 alkanes and notable contents of alcohols and carboxylic acids. Methanimine (CH3N) is inferred to be the main nitrogen species in N-poor reduced fluids. Therefore, the behaviour of CH3N may control the nitrogen cycle in N-poor peridotitic mantle. Oxidation of fluids strongly reduces the concentration of CH4 and bulk carbon. However, higher alkanes, alcohols, and carboxylic acids can resist oxidation and should remain stable in mantle hydrous magmas.",
keywords = "CRYSTALLIZATION, DIAMOND FORMATION, EARTHS MANTLE, HIGH-PRESSURE, HYDROCARBONS, KIMBERLITE, OXYGEN FUGACITY, PERIDOTITE XENOLITHS, PROFILE, REDOX STATE",
author = "Sokol, {Alexander G.} and Tomilenko, {Anatoly A.} and Bul'Bak, {Taras A.} and Palyanova, {Galina A.} and Sokol, {Ivan A.} and Palyanov, {Yury N.}",
year = "2017",
month = apr,
day = "6",
doi = "10.1038/s41598-017-00679-7",
language = "English",
volume = "7",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

RIS

TY - JOUR

T1 - Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 °c

AU - Sokol, Alexander G.

AU - Tomilenko, Anatoly A.

AU - Bul'Bak, Taras A.

AU - Palyanova, Galina A.

AU - Sokol, Ivan A.

AU - Palyanov, Yury N.

PY - 2017/4/6

Y1 - 2017/4/6

N2 - Deep carbon and nitrogen cycles played a critical role in the evolution of the Earth. Here we report on successful studying of speciation in C-O-H-N systems with low nitrogen contents at 6.3 GPa and 1100 to 1400 °C. At fO2 near Fe-FeO (IW) equilibrium, the synthesised fluids contain more than thirty species. Among them, CH4, C2H6, C3H8 and C4H10 are main carbon species. All carbon species, except for C1-C4 alkanes and alcohols, occur in negligible amounts in the fluids generated in systems with low H2O, but C15-C18 alkanes are slightly higher and oxygenated hydrocarbons are more diverse at higher temperatures and H2O concentrations. At a higher oxygen fugacity of +2.5 Δlog fO2 (IW), the fluids almost lack methane and contain about 1 rel.% C2-C4 alkanes, as well as fractions of percent of C15-18 alkanes and notable contents of alcohols and carboxylic acids. Methanimine (CH3N) is inferred to be the main nitrogen species in N-poor reduced fluids. Therefore, the behaviour of CH3N may control the nitrogen cycle in N-poor peridotitic mantle. Oxidation of fluids strongly reduces the concentration of CH4 and bulk carbon. However, higher alkanes, alcohols, and carboxylic acids can resist oxidation and should remain stable in mantle hydrous magmas.

AB - Deep carbon and nitrogen cycles played a critical role in the evolution of the Earth. Here we report on successful studying of speciation in C-O-H-N systems with low nitrogen contents at 6.3 GPa and 1100 to 1400 °C. At fO2 near Fe-FeO (IW) equilibrium, the synthesised fluids contain more than thirty species. Among them, CH4, C2H6, C3H8 and C4H10 are main carbon species. All carbon species, except for C1-C4 alkanes and alcohols, occur in negligible amounts in the fluids generated in systems with low H2O, but C15-C18 alkanes are slightly higher and oxygenated hydrocarbons are more diverse at higher temperatures and H2O concentrations. At a higher oxygen fugacity of +2.5 Δlog fO2 (IW), the fluids almost lack methane and contain about 1 rel.% C2-C4 alkanes, as well as fractions of percent of C15-18 alkanes and notable contents of alcohols and carboxylic acids. Methanimine (CH3N) is inferred to be the main nitrogen species in N-poor reduced fluids. Therefore, the behaviour of CH3N may control the nitrogen cycle in N-poor peridotitic mantle. Oxidation of fluids strongly reduces the concentration of CH4 and bulk carbon. However, higher alkanes, alcohols, and carboxylic acids can resist oxidation and should remain stable in mantle hydrous magmas.

KW - CRYSTALLIZATION

KW - DIAMOND FORMATION

KW - EARTHS MANTLE

KW - HIGH-PRESSURE

KW - HYDROCARBONS

KW - KIMBERLITE

KW - OXYGEN FUGACITY

KW - PERIDOTITE XENOLITHS

KW - PROFILE

KW - REDOX STATE

UR - http://www.scopus.com/inward/record.url?scp=85018768780&partnerID=8YFLogxK

U2 - 10.1038/s41598-017-00679-7

DO - 10.1038/s41598-017-00679-7

M3 - Article

C2 - 28386094

AN - SCOPUS:85018768780

VL - 7

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 706

ER -

ID: 9443597