Research output: Contribution to journal › Article › peer-review
Box-Quasimetrics and Horizontal Joinability on Cartan Groups. / Greshnov, A. V.; Kostyrkin, V. S.
In: Algebra and Logic, Vol. 1, No. 63, 21.12.2024, p. 10-20.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Box-Quasimetrics and Horizontal Joinability on Cartan Groups
AU - Greshnov, A. V.
AU - Kostyrkin, V. S.
N1 - Сведения о финансировании: Ministry of Education and Science of the Russian Federation 075-15-2022-282
PY - 2024/12/21
Y1 - 2024/12/21
N2 - On a Cartan group K equipped with a Carnot–Carathéodory metric dcc, we find the exact value of a constant in the (1, q2)-generalized triangle inequality for its Box-quasimetric. It is proved that any two points x, y ∈ K can be joined by a horizontal k-broken line Lx,yk, k ≤ 6; moreover, the length of such a broken line Lx,yk does not exceed the quantity Cdcc(x, y) for some constant C not depending on the choice of x, y ∈ K. The value 6 here is nearly optimal.
AB - On a Cartan group K equipped with a Carnot–Carathéodory metric dcc, we find the exact value of a constant in the (1, q2)-generalized triangle inequality for its Box-quasimetric. It is proved that any two points x, y ∈ K can be joined by a horizontal k-broken line Lx,yk, k ≤ 6; moreover, the length of such a broken line Lx,yk does not exceed the quantity Cdcc(x, y) for some constant C not depending on the choice of x, y ∈ K. The value 6 here is nearly optimal.
KW - (q1, q2)-quasimetric space
KW - Box-quasimetric
KW - Cartan group
KW - Rashevskii–Chow theorem
KW - horizontal broken line
UR - https://www.mendeley.com/catalogue/2ac846cb-0bb7-3b11-830c-ac1db9dc72c8/
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85212861167&origin=inward
U2 - 10.1007/s10469-024-09767-w
DO - 10.1007/s10469-024-09767-w
M3 - Article
VL - 1
SP - 10
EP - 20
JO - Algebra and Logic
JF - Algebra and Logic
SN - 0002-5232
IS - 63
ER -
ID: 61413226