Standard

Boolean algebras realized by c.e. equivalence relations. / Bazhenov, Nikolay; Mustafa, Manat; Stephan, Frank et al.

In: Сибирские электронные математические известия, Vol. 14, 2017, p. 848-855.

Research output: Contribution to journalArticlepeer-review

Harvard

Bazhenov, N, Mustafa, M, Stephan, F & Yamaleev, M 2017, 'Boolean algebras realized by c.e. equivalence relations', Сибирские электронные математические известия, vol. 14, pp. 848-855. https://doi.org/10.17377/semi.2017.14.071

APA

Bazhenov, N., Mustafa, M., Stephan, F., & Yamaleev, M. (2017). Boolean algebras realized by c.e. equivalence relations. Сибирские электронные математические известия, 14, 848-855. https://doi.org/10.17377/semi.2017.14.071

Vancouver

Bazhenov N, Mustafa M, Stephan F, Yamaleev M. Boolean algebras realized by c.e. equivalence relations. Сибирские электронные математические известия. 2017;14:848-855. doi: 10.17377/semi.2017.14.071

Author

Bazhenov, Nikolay ; Mustafa, Manat ; Stephan, Frank et al. / Boolean algebras realized by c.e. equivalence relations. In: Сибирские электронные математические известия. 2017 ; Vol. 14. pp. 848-855.

BibTeX

@article{eeb54b9891394378bfa5797b90584f45,
title = "Boolean algebras realized by c.e. equivalence relations",
abstract = "Let E be a computably enumerable (c.e.) equivalence relation on the set of natural numbers ω. We consider countable structures where basic functions are computable and respect E. If the corresponding quotient structure is a Boolean algebra B, then we say that the c.e. relation E realizes B. In this paper we study connections between algorithmic properties of E and algebraic properties of Boolean algebras realized by E. Also we compare these connections with the corresponding results for linear orders and groups realized by c.e. equivalence relations.",
keywords = "Boolean algebras, Computability theory, Computably enumerable structures, Equivalence relations, equivalence relations, computability theory, computably enumerable structures",
author = "Nikolay Bazhenov and Manat Mustafa and Frank Stephan and Mars Yamaleev",
year = "2017",
doi = "10.17377/semi.2017.14.071",
language = "English",
volume = "14",
pages = "848--855",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Boolean algebras realized by c.e. equivalence relations

AU - Bazhenov, Nikolay

AU - Mustafa, Manat

AU - Stephan, Frank

AU - Yamaleev, Mars

PY - 2017

Y1 - 2017

N2 - Let E be a computably enumerable (c.e.) equivalence relation on the set of natural numbers ω. We consider countable structures where basic functions are computable and respect E. If the corresponding quotient structure is a Boolean algebra B, then we say that the c.e. relation E realizes B. In this paper we study connections between algorithmic properties of E and algebraic properties of Boolean algebras realized by E. Also we compare these connections with the corresponding results for linear orders and groups realized by c.e. equivalence relations.

AB - Let E be a computably enumerable (c.e.) equivalence relation on the set of natural numbers ω. We consider countable structures where basic functions are computable and respect E. If the corresponding quotient structure is a Boolean algebra B, then we say that the c.e. relation E realizes B. In this paper we study connections between algorithmic properties of E and algebraic properties of Boolean algebras realized by E. Also we compare these connections with the corresponding results for linear orders and groups realized by c.e. equivalence relations.

KW - Boolean algebras

KW - Computability theory

KW - Computably enumerable structures

KW - Equivalence relations

KW - equivalence relations

KW - computability theory

KW - computably enumerable structures

UR - http://www.scopus.com/inward/record.url?scp=85041614007&partnerID=8YFLogxK

U2 - 10.17377/semi.2017.14.071

DO - 10.17377/semi.2017.14.071

M3 - Article

AN - SCOPUS:85041614007

VL - 14

SP - 848

EP - 855

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 9640742