Standard

Automorphisms of the Gersten Group. / Dudkin, F. A.; Shaporina, E. A.

In: Siberian Mathematical Journal, Vol. 62, No. 3, 05.2021, p. 413-422.

Research output: Contribution to journalArticlepeer-review

Harvard

Dudkin, FA & Shaporina, EA 2021, 'Automorphisms of the Gersten Group', Siberian Mathematical Journal, vol. 62, no. 3, pp. 413-422. https://doi.org/10.1134/S0037446621030046

APA

Vancouver

Dudkin FA, Shaporina EA. Automorphisms of the Gersten Group. Siberian Mathematical Journal. 2021 May;62(3):413-422. doi: 10.1134/S0037446621030046

Author

Dudkin, F. A. ; Shaporina, E. A. / Automorphisms of the Gersten Group. In: Siberian Mathematical Journal. 2021 ; Vol. 62, No. 3. pp. 413-422.

BibTeX

@article{5a7101255d374a1086a801d887ae4860,
title = "Automorphisms of the Gersten Group",
abstract = "The Gersten group $ G $ is the split extension (Formula Presented.) of the free group F3 with basis {a,b,c} bythe automorphism ϕ : a → a, b → ba, c → ca2.We describe the generators and structure of the group Out(G) and prove that(Formula Presented.).",
keywords = "512.54, automorphism, free group, Gersten group, outer automorphism group",
author = "Dudkin, {F. A.} and Shaporina, {E. A.}",
note = "Funding Information: F. A. Dudkin was supported by the Mathematical Center in Akademgorodok (Agreement No. 075–15–2019–1613 with the Ministry of Science and Higher Education of the Russian Federation). Publisher Copyright: {\textcopyright} 2021, Pleiades Publishing, Ltd.",
year = "2021",
month = may,
doi = "10.1134/S0037446621030046",
language = "English",
volume = "62",
pages = "413--422",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "3",

}

RIS

TY - JOUR

T1 - Automorphisms of the Gersten Group

AU - Dudkin, F. A.

AU - Shaporina, E. A.

N1 - Funding Information: F. A. Dudkin was supported by the Mathematical Center in Akademgorodok (Agreement No. 075–15–2019–1613 with the Ministry of Science and Higher Education of the Russian Federation). Publisher Copyright: © 2021, Pleiades Publishing, Ltd.

PY - 2021/5

Y1 - 2021/5

N2 - The Gersten group $ G $ is the split extension (Formula Presented.) of the free group F3 with basis {a,b,c} bythe automorphism ϕ : a → a, b → ba, c → ca2.We describe the generators and structure of the group Out(G) and prove that(Formula Presented.).

AB - The Gersten group $ G $ is the split extension (Formula Presented.) of the free group F3 with basis {a,b,c} bythe automorphism ϕ : a → a, b → ba, c → ca2.We describe the generators and structure of the group Out(G) and prove that(Formula Presented.).

KW - 512.54

KW - automorphism

KW - free group

KW - Gersten group

KW - outer automorphism group

UR - http://www.scopus.com/inward/record.url?scp=85106934396&partnerID=8YFLogxK

U2 - 10.1134/S0037446621030046

DO - 10.1134/S0037446621030046

M3 - Article

AN - SCOPUS:85106934396

VL - 62

SP - 413

EP - 422

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 3

ER -

ID: 34056626