Research output: Contribution to journal › Article › peer-review
Asymptotics of the Distribution Tail of the Sojourn Time for a Random Walk in a Domain of Moderate Large Deviations. / Borisov, I. S.; Shefer, E. I.
In: Siberian Advances in Mathematics, Vol. 30, No. 3, 01.07.2020, p. 162-176.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Asymptotics of the Distribution Tail of the Sojourn Time for a Random Walk in a Domain of Moderate Large Deviations
AU - Borisov, I. S.
AU - Shefer, E. I.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - An asymptotics is obtained for the distribution tail of the sojourn time for a homogeneousrandom walk defined on [0,n], above areceding level in a domain of moderate large deviations under Cramér’s condition on thejump distribution.
AB - An asymptotics is obtained for the distribution tail of the sojourn time for a homogeneousrandom walk defined on [0,n], above areceding level in a domain of moderate large deviations under Cramér’s condition on thejump distribution.
KW - Cramér’s condition
KW - moderate large deviations
KW - random walk
KW - sojourn time
UR - http://www.scopus.com/inward/record.url?scp=85089543676&partnerID=8YFLogxK
U2 - 10.3103/S1055134420030025
DO - 10.3103/S1055134420030025
M3 - Article
AN - SCOPUS:85089543676
VL - 30
SP - 162
EP - 176
JO - Siberian Advances in Mathematics
JF - Siberian Advances in Mathematics
SN - 1055-1344
IS - 3
ER -
ID: 24985439