Research output: Contribution to journal › Article › peer-review
Asymptotic Behavior of the Mean Sojourn Time for a Random Walk to be in a Domain of Large Deviations. / Borisov, I. S.; Shefer, E. I.
In: Siberian Advances in Mathematics, Vol. 30, No. 2, 01.02.2020, p. 77-90.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Asymptotic Behavior of the Mean Sojourn Time for a Random Walk to be in a Domain of Large Deviations
AU - Borisov, I. S.
AU - Shefer, E. I.
N1 - Publisher Copyright: © 2020, Allerton Press, Inc. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - We study the asymptotic behavior of the mean of sojourn time for a homogeneous randomwalk defined on [0,n] to be above a receding curvilinear boundaryin a domain of large deviations under Cramér’s condition on the jump distribution.
AB - We study the asymptotic behavior of the mean of sojourn time for a homogeneous randomwalk defined on [0,n] to be above a receding curvilinear boundaryin a domain of large deviations under Cramér’s condition on the jump distribution.
KW - large deviations
KW - mean sojourn time
KW - random walk
UR - http://www.scopus.com/inward/record.url?scp=85086250488&partnerID=8YFLogxK
U2 - 10.3103/S1055134420020017
DO - 10.3103/S1055134420020017
M3 - Article
AN - SCOPUS:85086250488
VL - 30
SP - 77
EP - 90
JO - Siberian Advances in Mathematics
JF - Siberian Advances in Mathematics
SN - 1055-1344
IS - 2
ER -
ID: 24515610