Standard

Area of a triangle and angle bisectors. / Buturlakin, A. A.; Presnyakov, S. S.; Revin, D. O. et al.

In: Сибирские электронные математические известия, Vol. 17, 01.06.2020, p. 732-737.

Research output: Contribution to journalArticlepeer-review

Harvard

Buturlakin, AA, Presnyakov, SS, Revin, DO & Savin, SA 2020, 'Area of a triangle and angle bisectors', Сибирские электронные математические известия, vol. 17, pp. 732-737. https://doi.org/10.33048/SEMI.2020.17.052

APA

Buturlakin, A. A., Presnyakov, S. S., Revin, D. O., & Savin, S. A. (2020). Area of a triangle and angle bisectors. Сибирские электронные математические известия, 17, 732-737. https://doi.org/10.33048/SEMI.2020.17.052

Vancouver

Buturlakin AA, Presnyakov SS, Revin DO, Savin SA. Area of a triangle and angle bisectors. Сибирские электронные математические известия. 2020 Jun 1;17:732-737. doi: 10.33048/SEMI.2020.17.052

Author

Buturlakin, A. A. ; Presnyakov, S. S. ; Revin, D. O. et al. / Area of a triangle and angle bisectors. In: Сибирские электронные математические известия. 2020 ; Vol. 17. pp. 732-737.

BibTeX

@article{e47bbc4227df4d4a91cab9b59195f18e,
title = "Area of a triangle and angle bisectors",
abstract = "Consider a triangle ABC with given lengths la, lb, lc of its internal angle bisectors. We prove that in general, it is impossible to construct a square of the same area as ABC using a ruler and compass. Moreover, it is impossible to express the area of ABC in radicals of la, lb, lc.",
keywords = "Algebraic equation, Angle bisectors, Area of a triangle, Galois group of a polynomial, Ruler and compass construction, Solution in radicals",
author = "Buturlakin, {A. A.} and Presnyakov, {S. S.} and Revin, {D. O.} and Savin, {S. A.}",
note = "Publisher Copyright: {\textcopyright} 2020 Buturlakin A.A., Presnyakov S.S., Revin D.O., Savin S.A. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = jun,
day = "1",
doi = "10.33048/SEMI.2020.17.052",
language = "English",
volume = "17",
pages = "732--737",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Area of a triangle and angle bisectors

AU - Buturlakin, A. A.

AU - Presnyakov, S. S.

AU - Revin, D. O.

AU - Savin, S. A.

N1 - Publisher Copyright: © 2020 Buturlakin A.A., Presnyakov S.S., Revin D.O., Savin S.A. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/6/1

Y1 - 2020/6/1

N2 - Consider a triangle ABC with given lengths la, lb, lc of its internal angle bisectors. We prove that in general, it is impossible to construct a square of the same area as ABC using a ruler and compass. Moreover, it is impossible to express the area of ABC in radicals of la, lb, lc.

AB - Consider a triangle ABC with given lengths la, lb, lc of its internal angle bisectors. We prove that in general, it is impossible to construct a square of the same area as ABC using a ruler and compass. Moreover, it is impossible to express the area of ABC in radicals of la, lb, lc.

KW - Algebraic equation

KW - Angle bisectors

KW - Area of a triangle

KW - Galois group of a polynomial

KW - Ruler and compass construction

KW - Solution in radicals

UR - http://www.scopus.com/inward/record.url?scp=85089232064&partnerID=8YFLogxK

U2 - 10.33048/SEMI.2020.17.052

DO - 10.33048/SEMI.2020.17.052

M3 - Article

AN - SCOPUS:85089232064

VL - 17

SP - 732

EP - 737

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 24964951