Standard

Algebraic Closures in Divisible Rigid Groups. / Romanovskii, N. S.

In: Siberian Mathematical Journal, Vol. 65, No. 4, 07.2024, p. 840-845.

Research output: Contribution to journalArticlepeer-review

Harvard

Romanovskii, NS 2024, 'Algebraic Closures in Divisible Rigid Groups', Siberian Mathematical Journal, vol. 65, no. 4, pp. 840-845. https://doi.org/10.1134/S0037446624040116

APA

Romanovskii, N. S. (2024). Algebraic Closures in Divisible Rigid Groups. Siberian Mathematical Journal, 65(4), 840-845. https://doi.org/10.1134/S0037446624040116

Vancouver

Romanovskii NS. Algebraic Closures in Divisible Rigid Groups. Siberian Mathematical Journal. 2024 Jul;65(4):840-845. doi: 10.1134/S0037446624040116

Author

Romanovskii, N. S. / Algebraic Closures in Divisible Rigid Groups. In: Siberian Mathematical Journal. 2024 ; Vol. 65, No. 4. pp. 840-845.

BibTeX

@article{6d57fa2f469443e39469a3993dccdefc,
title = "Algebraic Closures in Divisible Rigid Groups",
abstract = "We prove that in a divisible -rigid groupthe algebraic closure of each setgenerating a subgroup of solvability length coincides with the elementary closure of this set.",
keywords = "512.5:510.6, algebraic closure, elementary theory, group, solvable group",
author = "Romanovskii, {N. S.}",
note = "The work was supported by the Russian Science Foundation (Grant no. 24\u201321\u201300214, https://rscf.ru/project/24-21-00214/).",
year = "2024",
month = jul,
doi = "10.1134/S0037446624040116",
language = "English",
volume = "65",
pages = "840--845",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "4",

}

RIS

TY - JOUR

T1 - Algebraic Closures in Divisible Rigid Groups

AU - Romanovskii, N. S.

N1 - The work was supported by the Russian Science Foundation (Grant no. 24\u201321\u201300214, https://rscf.ru/project/24-21-00214/).

PY - 2024/7

Y1 - 2024/7

N2 - We prove that in a divisible -rigid groupthe algebraic closure of each setgenerating a subgroup of solvability length coincides with the elementary closure of this set.

AB - We prove that in a divisible -rigid groupthe algebraic closure of each setgenerating a subgroup of solvability length coincides with the elementary closure of this set.

KW - 512.5:510.6

KW - algebraic closure

KW - elementary theory

KW - group

KW - solvable group

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85198647615&origin=inward&txGid=f295ae5bf47ada8667bbbd51579dfbe5

UR - https://www.mendeley.com/catalogue/e323cd21-6aac-32a2-acc0-8dab6d5f1776/

U2 - 10.1134/S0037446624040116

DO - 10.1134/S0037446624040116

M3 - Article

VL - 65

SP - 840

EP - 845

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 4

ER -

ID: 60863692