Research output: Contribution to journal › Article › peer-review
Accurate Thermochemistry of Novel Energetic Fused Tricyclic 1,2,3,4-Tetrazine Nitro Derivatives from Local Coupled Cluster Methods. / Kiselev, Vitaly G.; Goldsmith, C. Franklin.
In: Journal of Physical Chemistry A, Vol. 123, No. 45, 14.11.2019, p. 9818-9827.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Accurate Thermochemistry of Novel Energetic Fused Tricyclic 1,2,3,4-Tetrazine Nitro Derivatives from Local Coupled Cluster Methods
AU - Kiselev, Vitaly G.
AU - Goldsmith, C. Franklin
PY - 2019/11/14
Y1 - 2019/11/14
N2 - Highly accurate theoretical values of formation enthalpies and bond energies are crucial for reliable predictions of performance and detonation-related phenomena of energetic materials (EM). However, high-level ab initio calculations even for medium-sized important EMs still remain a demanding challenge. In the present work, we studied in detail the gas-phase thermochemistry of novel high-energy polynitro derivatives of 5/6/5 structural frameworks comprised of fused 1,2,3,4,-tetrazine and two 1,2,4-triazole or pyrazole rings. To this end, we proposed and benchmarked a "bottom-up" approach. First, highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were utilized for smaller species. In turn, for medium-sized species (up to 24 non-H atoms), these values were complemented with the enthalpies of isodesmic reactions calculated using the recently proposed domain-based local pair natural orbital (DLPNO) modifications of coupled cluster techniques. The benchmarks on a number of atomization energies and enthalpies of isodesmic reactions reveal that the DLPNO-CCSD(T)/aVQZ approach does not deteriorate the quality of the W1-F12 and W2-F12 procedures and exhibits overall accuracy close to "chemical" ('1 kcal mol-1). We obtained a set of accurate and mutually consistent gas-phase formation enthalpies for 12 energetic heterocyclic species. Among them, the gas-phase formation enthalpy of 1,2,9,10-tetranitrodipyrazolo[1,5-d:5′,1′-f][1,2,3,4]tetrazine, a novel promising EM, turned out to be ΔfHgas0 = 214.5 kcal mol-1, which is '12 kcal mol-1 higher than the best theoretical estimates available in the literature. The formation enthalpy of another novel EM, a fused tricyclic 1,2,3,4-tetrazine with two nitro-1,2,4-triazole moieties, was predicted to be ΔfHgas0 = 213.5 kcal mol-1, which is also '4 kcal mol-1 higher than the reported value. Apart from this, we considered the thermodynamics of radical reactions (viz., C-NO2 bond scission) and the thermochemistry of the corresponding radicals. The difference between DLPNO-CCSD(T)/aVQZ and CCSD(T)-F12/VTZ-F12 benchmark values did not exceed 1 kcal mol-1. In a more general sense, the use of DLPNO-CCSD(T) in conjunction with the bottom-up approach is promising for quantitative thermochemical calculations of energetic materials composed of species up to several dozens of CHNO atoms.
AB - Highly accurate theoretical values of formation enthalpies and bond energies are crucial for reliable predictions of performance and detonation-related phenomena of energetic materials (EM). However, high-level ab initio calculations even for medium-sized important EMs still remain a demanding challenge. In the present work, we studied in detail the gas-phase thermochemistry of novel high-energy polynitro derivatives of 5/6/5 structural frameworks comprised of fused 1,2,3,4,-tetrazine and two 1,2,4-triazole or pyrazole rings. To this end, we proposed and benchmarked a "bottom-up" approach. First, highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were utilized for smaller species. In turn, for medium-sized species (up to 24 non-H atoms), these values were complemented with the enthalpies of isodesmic reactions calculated using the recently proposed domain-based local pair natural orbital (DLPNO) modifications of coupled cluster techniques. The benchmarks on a number of atomization energies and enthalpies of isodesmic reactions reveal that the DLPNO-CCSD(T)/aVQZ approach does not deteriorate the quality of the W1-F12 and W2-F12 procedures and exhibits overall accuracy close to "chemical" ('1 kcal mol-1). We obtained a set of accurate and mutually consistent gas-phase formation enthalpies for 12 energetic heterocyclic species. Among them, the gas-phase formation enthalpy of 1,2,9,10-tetranitrodipyrazolo[1,5-d:5′,1′-f][1,2,3,4]tetrazine, a novel promising EM, turned out to be ΔfHgas0 = 214.5 kcal mol-1, which is '12 kcal mol-1 higher than the best theoretical estimates available in the literature. The formation enthalpy of another novel EM, a fused tricyclic 1,2,3,4-tetrazine with two nitro-1,2,4-triazole moieties, was predicted to be ΔfHgas0 = 213.5 kcal mol-1, which is also '4 kcal mol-1 higher than the reported value. Apart from this, we considered the thermodynamics of radical reactions (viz., C-NO2 bond scission) and the thermochemistry of the corresponding radicals. The difference between DLPNO-CCSD(T)/aVQZ and CCSD(T)-F12/VTZ-F12 benchmark values did not exceed 1 kcal mol-1. In a more general sense, the use of DLPNO-CCSD(T) in conjunction with the bottom-up approach is promising for quantitative thermochemical calculations of energetic materials composed of species up to several dozens of CHNO atoms.
KW - TRANSITION-METAL-COMPLEXES
KW - N-HETEROCYCLIC COMPOUNDS
KW - ZERO-FIELD SPLITTINGS
KW - THERMODYNAMIC PROPERTIES
KW - ELECTRON-AFFINITIES
KW - DENSITY FUNCTIONALS
KW - VAPOR-PRESSURES
KW - ENTHALPIES
KW - COMBUSTION
KW - HEATS
UR - http://www.scopus.com/inward/record.url?scp=85074796873&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.9b08356
DO - 10.1021/acs.jpca.9b08356
M3 - Article
C2 - 31633937
AN - SCOPUS:85074796873
VL - 123
SP - 9818
EP - 9827
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
SN - 1089-5639
IS - 45
ER -
ID: 22337641