Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
1D Hyperbolic Systems with Nonlinear Boundary Conditions I: L2 -Generalized Solutions. / Lyul’ko, Natalya.
Trends in Mathematics. Springer Science and Business Media Deutschland GmbH, 2023. p. 455-463 35 (Trends in Mathematics; Vol. Part F1649).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
}
TY - GEN
T1 - 1D Hyperbolic Systems with Nonlinear Boundary Conditions I: L2 -Generalized Solutions
AU - Lyul’ko, Natalya
N1 - Conference code: 32
PY - 2023
Y1 - 2023
N2 - We consider 1D nonautonomous initial boundary value problems for general linear first-order hyperbolic systems with nonlinear boundary conditions. For initial L2 -data, we prove existence and uniqueness of L2 -generalized solutions if the nonlinearities are Lipschitz continuous.
AB - We consider 1D nonautonomous initial boundary value problems for general linear first-order hyperbolic systems with nonlinear boundary conditions. For initial L2 -data, we prove existence and uniqueness of L2 -generalized solutions if the nonlinearities are Lipschitz continuous.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85176609542&origin=inward&txGid=af5b397cb7ed3c7f11dad983886a4bc9
UR - https://www.mendeley.com/catalogue/159eb7a9-0fd7-3b9e-9252-6a6aaaa61a05/
U2 - 10.1007/978-3-031-36375-7_35
DO - 10.1007/978-3-031-36375-7_35
M3 - Conference contribution
SN - 978-3-031-36374-0
T3 - Trends in Mathematics
SP - 455
EP - 463
BT - Trends in Mathematics
PB - Springer Science and Business Media Deutschland GmbH
T2 - The 32nd International Symposium on Algorithms and Computation
Y2 - 6 December 2021 through 8 December 2021
ER -
ID: 59232783